lezioni 2014-lipidi

Download Report

Transcript lezioni 2014-lipidi

LIPIDI

Riserve energetiche (trigliceridi), sono molecole più ridotte rispetto agli zuccheri e dalla loro ossidazione viene liberata una quantità di energia maggiore.

Costituzione delle membrane biologiche (glicerofosfolipidi, sfingolipidi) Isolamento e rivestimento termico, protezione delle superfici (cere) Funzioni altamente specializzate, di tipo ormonale, riconoscimento cellulare.

Sono molecole insolubili in soluzione acquosa.

Possono essere totalmente idrofobici oppure anfipatici.

Costituenti basilari dei lipidi sono gli ACIDI GRASSI

Acidi grassi: Composti da una coda idrocarburica ± lunga e una funzione acida (COOH in posizione 1) I più comuni possiedono da 12 a 20 atomi di carboni Possono essere saturi, Monoinsaturi o poliinsaturi (il primo doppio legame è solitamente in posizione 9-10, i successivi in posizione 12-13, e 15-16, non sono coniugati). In genere il doppio legame è

CIS

e viene indicato nella nomenclatura con il simbolo Δ n n = posizione del doppio legame Ac. ottadecanoico Ac.

cis

-Δ 9 Ac. Stearico Ac. Oleico Ac. Linoleico Ac. linolenico -ottadecanoico Ac.

cis

-Δ 9,12 -ottadecanoico Ac.

cis

-Δ 9,12,15 -ottadecanoico

LIPIDI DERIVANTI DAL GLICEROLO

TRIGLICERIRIDI (o TRIACILGLICEROLI) GLICEROFOSFOLIPIDI

LIPIDI DERIVANTI DALLA SFINGOSINA

H H

SFINGOMIELINE GLICOLIPIDI

LIPIDI CON NUCLEO STEROIDEO (STEROLI)

COELSTEROLO AC. BILIARI ORMONI STEROIDEI

TRIGLICERIDI

Lipidi di riserva energetica. Dalla loro degradazione e ossidazione si ricava energia.

sono lipidi NEUTRI, totalmente APOLARI Sono immagazzinati in forma anidra nelle cellule adipose sotto forma di vacuoli limitati da membrane, da cui sono mobilizzati per produrre energia in condizioni di digiuno (es. durante il sonno).

Glicerolo + acidi grassi (legati attraverso legame ESTERE)

glicerolo

Esistono Triacilgliceroli Diacilgliceroli Monoacilgliceroli, 1-stearil,2-linoleil,3-palmitoil glicerolo

GLICEROFOSFOLIPIDI

(costituenti delle membrane biologiche) Struttura base dei glicerofosfolipidi: acido fosfatidico o fosfatide Composto da: Glicerolo 3-fosfato esterificato con 2 acidi grassi (C-1 e C-2) Legami estere H Legame estere glicerolo 3-fosfato Ac. fosfatidico I fosfatidi si differenziano per la natura delle loro 2 code idrocarburiche (per il n° di atomi di Carbonio e le insaturazioni).

Il gruppo fosfato solitamente forma un secondo legame estere con un’altra molecola che porta una funzione alcolica e con cui costituisce così la “testa polare” del glicerofosfolipide

Testa polare idrofilica: fosfato + colina I GLICEROFOSFOLIPIDI SONO MOLECOLE ANFIPATICHE Coda idrofobica: glicerolo + catene idrocarburiche (stearato in C1 e oleato in C2) - in C2 solitamente una catena acilica insatura -

Per studiare la struttura dei glicerofosfolipidi e identificare i loro componenti, essi devono essere idrolizzati con enzimi specifici: le lipasi.

Fosfolipasi A 2 (idrolizza il legame estere in posizione 2) Fosfolipasi A 1 (idrolizza il legame estere in posizione 1) GLICEROLO

H H H

IDROLISI COMPLETA Fosfolipasi C (idrolizza il legame estere fra il fosfato e il glicerolo) Fosfolipasi D (idrolizza il legame estere fra il fosfato e la testa polare)

H

2 AC. GRASSI HO-X TESTA POLARE FOSFATO

H

Le fosfolipasi sono presenti nel succo pancreatico e servono a digerire i fosfolipidi assunti con la dieta.

Il veleno di serpenti, api e vespe contiene la fosfolipasi A 2 ; concentrazioni molto elevate di quest’enzima nel sangue può causare la lisi delle membrane plasmatiche, perché va a idrolizzare i glicerofosfolipidi che la costituiscono.

PLASMALOGENI

Glicerofosfolipidi

in cui in posizione 1 la coda idrocarburica è legata attraverso un legame etere , mentre in C-2 il gruppo acilico è legato mediante legame estere Abbondanti nelle membrane dei neuroni (cervello e nervi periferici), nel tessuto muscolare e cardiaco Particolarmente resistenti alle fosfolipasi Legame etere con una catena idrocarburica alchilica Agisce nel processo di coagulazione del sangue e riparazione delle ferite.

Secreto dai leucociti nel sangue, stimola le piastrine ad aggregarsi e a secernere serotonina (vasocostrittore).

Ac. Acetico esterificato in C-2 La testa polare contiene colina.

FATTORE ATTIVANTE LE PIASTRINE

SFINGOLIPIDI

(costituenti delle membrane biologiche) La molecola base è la sfingosina (amminoalcol) con una lunga catena idrocarburica monoinsatura che parte dal C-3, gruppi OH legati in C-3 e C-1 e un gruppo amminico in C-2.

CERAMMIDE: Struttura base degli sfingolipidi = sfingosina + 1 ac. grasso (OH in C-1 libero)

H H

La sfingosina lega 1 solo acido grasso attraverso un legame CARBOAMMIDICO Catena acilica dell’ac. grasso il cerammide legherà la testa polare sul carbonio 1 Sfingomieline Cerebrosidi Globosidi Gangliosidi testa polare fosfocolina o fosfoetanolammina tramite legame estere monosaccaride (Glucosio o galattosio tramite legame glicosidico) Di-, Tri-, Tetra-saccaride (legame glicosidico) oligosaccaride complesso (legame glicosidico)

Sfingomieline: Sono ANFIPATICHE Sono Fosfolipidi

Coda idrofobica: catena idrocarburica della sfingosina e catena acilica dell’ac. grasso

Cerebrosidi, globosidi e gangliosidi sono GLICOSFINGOLIPIDI o GLICOLIPIDI Non sono fosforilati Cerebrosidi e globosidi sono glicolipidi neutri Gangliosidi: possono avere uno o più residui di zuccheri acidi, hanno una testa polare carica negativamente a pH 7. La testa polare è molto voluminosa GLUCOSILCERAMMIDE Glucosio legato con legame β glicosidico LATTOSILCERAMMIDE

GANGLIOSIDE

STEROLI

Lipidi strutturali delle membrane plasmatiche

Nucleo steroideo

, rigido e planare Anello tetraciclico condensato: 3 cicloesani e 1 ciclopentano Testa polare.

Il colesterolo libero è esterificato in questa posizione con un ac. grasso porzione idrofobica Sterolo più abbondante nelle membrane delle cellule animali Anfipatico Nelle piante = stigmasterolo Nei funghi = ergosterolo

Gi steroli sono precursori di composti steroidei con attività specifiche

ACIDI BILIARI = liberati nell’intestino durante la digestione agiscono come detergenti dei grassi favorendo a loro degradazione ORMONI STEROIDEI = controllano la funzionalitò di diversi organi e regolano l’espressione genica e il metabolismo, la riproduzione

LE MEMBRANE CELLULARI

FUNZIONI: - Protezione - Sostegno - Scambio di molecole e segnali - Siti di reazioni metaboliche Formate dall’aggregazione di lipidi strutturali, proteine e glucidi .

La loro composizione varia nei diversi tipi cellulari, nelle diverse specie e nei diversi organuli delle cellule eucariotiche.

La loro composizione riflette la loro specializzazione funzionale.

Sono impermeabili a soluti polari o carichi e sono permeabili a soluti non polari, il passaggio di molecole polari e ioni attraverso la membrana è regolato da specifici sistemi di trasporto

La struttura delle membrane biologiche rispetta il MODELLO A MOSAICO FLUIDO

Superficie idrofilica Superficie idrofilica interno La membrana biologica è costituita da un DOPPIO STRATO LIPIDICO che racchiude un compartimento acquoso interno e lo separa da quello esterno.

I lipidi di membrana sono tutti lipidi anfipatici : Fosfolipidi (glicerofosfolipidi e sfingomieline) Glicolipidi Colesterolo L’effetto idrofobico è la forza che traina i lipidi anfipatici ad aggregarsi in un doppio foglietto: - l’acqua viene totalmente esclusa dall’interno del doppio foglietto, le code idrocarburiche dei lipidi costituiscono un ambiente interno anidro.

- Le code idrocarburiche dei lipidi si impacchettano strettamente e stabiliscono interazioni idrofobiche e di van der Waals che stabilizzano il doppio foglietto.

- Le teste polari interagiscono tra loro e con le molecole d’H 2 O.

La distribuzione dei lipidi è ASIMMETRICA nella membrana cellulare: i due foglietti non hanno la stessa composizione e questa può variare in funzione dei ruoli biologici che la membrana assume.

Il doppio foglietto lipidico delle membrane biologiche è una struttura fluida e dinamica: i lipidi possono diffondere lungo lo stesso foglietto da un punto ad un altro (diffusione laterale).

rapida

È molto lenta invece la diffusione trasversale, dal foglietto interno a quello esterno e viceversa (movimento a flip-flop) e quando avviene è guidato da enzimi chiamati Flippasi e Floppasi, e avviene per ragioni funzionali precise.

Per es.: il passaggio della fosfatidilserina dal foglietto interno a quello esterno della membrana plasmatica è uno dei segnali che indirizzano la cellula verso la morte programmata (apoptosi)

La FLUIDITA’ del doppio strato lipidico dipende da: a) temperatura b) tipo di lipidi (natura delle code idrocarburiche) Temperatura di transizione Sopra la Temperatura di transizione A temperature superiori alla temperatura di transizione si trova in uno stato liquido disordinato (rotazioni continue intorno ai legami C-C) Sotto la Temperatura di transizione A temperature intermedie: STATO LIQUIDO ORDINATO (il movimento delle catene è minore, avviene uno spostamento laterale dei lipidi). È lo stato in cui si trovano le membrane biologiche a temperature corporee A temperature relativamente basse il doppio strato lipidico si trova in uno stato di gel semisolido o paracristallino (movimenti limitati)

Se consideriamo una temperatura compresa fra i 20 e i 40 °C la fluidità del doppio strato lipidico aumenta con l’aumentare di catene idrocarburiche

insature e corte

.

Catene più corte Maggior grado di INSATURAZIONE MINORI CONTATTI DI VAN DER WAALS Impaccamento più rilassato Catene più lunghe Maggior grado di SATURAZIONE MAGGIORI CONTATTI DI VAN DER WAALS Impaccamento più stretto Le curvature imposte dai doppi legami

cis

rigidi allontanano le code idrocarburiche.

Infatti, la temperatura di fusione di un acido grasso dipende dalla lunghezza della catena idrocarburica e dalla presenza di insaturazioni.

T. Fusione stearato (saturo, 18 C) = 70°C T. Fusione oleato (1 insaturazione, 18 C) = 13°C T. Fusione linolenico (3 insaturazioni, 18 C)= -17°C

Anche gli STEROLI (colesterolo) quando presenti in una membrana cellulare hanno lo stesso effetto delle insaturazioni: gli steroli hanno un corpo idrofobico non lineare che crea delle interruzioni nel doppio foglietto diminuendo le interazioni da impaccamento e rendendo la membrana più fluida.

PROTEINE DI MEMBRANA PROTEINE PERIFERICHE

associate alla superficie della membrana tramite interazioni elettrostatiche e legami idrogeno con le teste polari dei lipidi, o con le porzioni esterne di proteine integrali.

PROTEINE INTEGRALI

immerse nel doppio strato lipidico, a cui sono stabilmente associate tramite interazioni idrofobiche con le code dei lipidi. Alcune proteine attraversano completamente la membrana con un dominio

transmembrana

e presentano dei domini che sporgono o nello spazio extracellulare o nel citosol o in entrambi α-eliche idrofobiche β-foglietti idrofobici in un motivo a barile

Residui apolari Residui polari

Canale transmembrana per l’attraversamento di soluti polari

PROTEINE TRANSMEMBRANA Dominio transmembrana: α elica idrofobica Spazio extracellulare citosol Dominio N-terminale glicosilato esterno Dominio C-terminale idrofilico citosolico

Le proteine di membrana sono disposte in modo asimmetrico

Proteine e lipidi di membrana si organizzano come tessere di un mosaico che sono tenute insieme da interazioni stabili che nel contempo assicurano la fluidità ; infatti i componenti della membrana sono liberi di spostarsi lateralmente mantenendo intatta la membrana stessa glicolipidi glicoproteine Proteina integrale transmembrana α-elica idrofobica Proteina periferica fosfolipidi colesterolo

PROTEINE legate covalentemente alle ANCORE LIPIDICHE Le ancore lipidiche sono Acidi grassi a catena lunga, Isoprenoidi, e Derivati Glicosilati del FosfatidilInositolo (GPI) Sono inserite nel doppio strato lipidico Ac. Palmitico legato al residuo di Cys/Ser della proteina Ac. miristico (14 C) legato alla Gly N-terminale della proteina Ancora= Fosfatidilinositolo + pentasaccaride + foetanolammina. La proteina è legata col suo C-terminale Gruppo farnesilico (15 C) legato al residuo di Cys C-terminale della proteina