ALS with - Univa Calabria

Download Report

Transcript ALS with - Univa Calabria

Demenza Fronto-Temporale e Malattia del Motoneurone

Vincenzo Silani Dept. Neurology-Stroke Unit - Laboratory of Neuroscience “Dino Ferrari” Center IRCCS Istituto Auxologico Italiano University of Milan Medical School

1869

ALS: disease due to selective vulnerability

atrophy weakness tone tendon reflexes abnormal reflexes

CRITERI CLINICI

Trofismo Tono Stenia ROT Segni patologici

UMN LMN

REGIONS

Bulbar

+

Cervica l Thoracic Abdominal Lombar

+ +/ + + + + + Clinically definite ALS

ALS: disease due to selective vulnerability

El Escorial (1990) Nature, 1993 Airlie House (1994) Airlie House (1998) AAN (1999) Awaji Consensus (2008) …………

Different clinical phenotypes !

Sabatelli et al., 2013

Amyotrophic Lateral Sclerosis

Jean-Martin Charcot, 1874 “ patients are not demented and cognition is spared “

ALS: The extramotor “Moveable Feast”

• • • • • • • • • • • • • Marie, 1892 Dornbluth, 1889 Raymond, Cestan, 1905 Fragnito, 1907 van Bogaert 1925 Meyer, 1929 Zieger, 1930 Braunmuhl, 1932 (single case report, link ALS-Pick) De Caro, 1941 Michaux, 1951 Delay, 1959 Van Reeth, Coers e van Bogaert, 1961 …… but • Poloni et al. 1986: no neupsychological deficits in ALS !

Annali di Neurologia

, 25, 273-287, 1907

Encephale

, 20, 27- 47, 1925

Zeitschrift für die Gesamte Neurologie und Psychiatrie, 121, 107-138, 1929

Ludo van Bogaert (1897-1989)

Rassegna di Studi Psichiatrici

, 30, 705-722, 1941 • frontal impairment clearly mentioned

The clinical diagnosis and the various types of FTLD Neary

et al

, 1998, 2005, 2011

--- mild frontal deficits as a group effect --- impaired word and design fluency --- correlation with decreased glucose metabolism

Clear-cut group differences, but also large interindividual differences ALS ALS Normal

Frontal functions were predominantly affected………..

- „your hypothesis is wrong, Dr.Ludolph“ (Editor of……1988)

Regional brain atrophy in ALS patients with unknown cognitive status P 50% 32% F I 38% T 20% O 12%

+ white matter degeneration

• left middle/inferior front gyri • anterior portion sup front gyri • sup temp gyri • temp poles • left post thalamus • amigdala • medial temp lobe • > severe frontal atrophy ALS + FTLD

ALS

Leigh and Lowe (1988- 2006): ubiquitin deposits

2006 2006 Ubiquitin TDP-43

TDP-43: scoperta legata alla immunoistochimica * * Neumann et al., 2006 TDP-43 aggregates in the cytoplasm * , leading to its loss from the nucleus * Model of TDP-43 disease pathogenesis

ALS & FTD: making connections

2008 2008

• • 149 French FTLD-MND (71 familial – 78 sporadic) 3 variants in 9 patients

Coorte studiata: FALS 6/125 4.8% SALS 12/541 2.2%

first evidence of pathogenic mutation as causative of behavioural variant of FTD without MND – 74 y/o - bvFTD

2011

Proteinopatie TDP-43

Neumann, et al., 2006 più comune sottotipo istolopatologico Cairns and Ghoshal, 2010 modified

Science 26 Feb 2009

FUS/TLS in Italian FALS

FTD

bvFTD

= FTLD-FUS • aFLTD-U, sporadic • no FUS mutations • 10 % cases • tau/TDP-43 neg • glial localization

Proteinopatie TDP-43 e FUS

Cairns and Ghoshal, 2010

Novel molecular classification / Nomenclature of FTLD Inclusions No Inclusions TAU+ Old nomenclature Tau-positive FTLD Ubiquitin-only+ FTLD-U Intermediate Filaments Basophilic Inclusions NIFID BIBD TDP-43 + TDP-43 FUS FUS+ Consensus 2009 and 2010 FTLD-tau FTLD-TDP 40% 50% FTD L UPS <1% FUS+ FTLD-FUS 8% FUS+ DLDH FTLD -ni <1%

TDP43 e FUS: studi funzionali

in vitro

TDP-43 FUS

Colture primarie di Motoneuroni Cellule HEK293 Nei pazienti SLA e FTLD TDP-43 forma aggregati anche se non è mutato Nei pazienti SLA, ma non FTLD, FUS forma aggregati solo se è mutato

TET family of DNA/RNA binding proteins:

FUS, EWS, TAF15

No coding variants in

EWS

2011

Supplementary Figure 2: Additional Pedigrees with TAF15 Variants.

harboring the mutation.

Individuals with dementia are shown in grey and individual with ALS and FTD dementia are shown by a checkerboard pattern. Arrows indicate the individual originally identified ALS-FTD FDT

No TAF15 and EWS pathology in ALS-FUS (no colocalization)

TAF15

FTLD-FUS NIFID BIBD lmn

EWS

FTLD-FUS glia NIFID BIBD lmn glia Neumann et al., 2011

August 2011

UBQLN2

+ FTD + FTD FALS 3/132 2.3% SALS 6/605 0.9%

JNNP, 2011 6/161 FALS (1.2%) 4/113 SALS (3.5%) UMN No mutation identified in FTD (Muruyama et al., 2010; Rollison et al., 2010)

OPT OPT&TDP-43

Other FTLD mutations

:

chromosome 9

2001

-

valosin containing protein

with FTD , inclusion body myopathy (IBMPFD, Kovach et al.)

(

VCP) mutations: associated (IBM) and Paget’s disease • Dementia: presents later than both IBM and Paget’s disease • VCP: molecular chaperone in several processes related with ubiquitin-dependent protein degradation To date,

9

VCP mutations in reported Guinto et al., 2007

Neuron, 2010

Classical ALS phenotype Johnson et al., 2010

Progranulin gene (

GRN

)

located 1.7 Mb centromeric to MAPT

Arch Neurol, 2010

FTLD-TDP

TDP-43 and progranulin: possible link?

J Neurosci, 2007 PGRN knockdown > Cleaved Caspase 3

Other FTLD mutations: chromosome 3

- FTD with parkinsonism, dystonia and pyramidal signs (Gydesen et al, 1987) - linkage to chromosome 3 (Brown et al., 1995; Yancopoulou et al., 2003): FTD-3 - mutation of the splice acceptor site of exon 6 of CHMP2B (charged multivescicular body protein 2B) in a Danish pedigree ( Skibinski et al., 2005 ).

2010 spinal cord oligodedroglial coiled bodies TDP43 p62

ALS8

Ch9: an ongoing saga

Chromosome 9p and FTLD-MND • 15 pedigrees with linkage to a 3,6Mbp minimal disease region between markers

D9S169

and

D9S51(ALSFTD2

locus

)

• Candidate genes analyzed for a mutation with cosegregation:

SIGMAR1

Luty et al., 2010

C9orf72

SLA, PD, FTD

GWA in SALS (and FTLD)

2010

Neuron

, September 22, 2011 (VS20) TDP43

ALS: Expansion Disease !

SLA GGGGCC (G 4 C 2 )

3-48% FFTLD, 3-46% FALS, 2-23% FTLD, 0,4-21% SALS, 10-88% combined syndromes 72.000 case and control samples screened, 3.300 C9orf72 reported Wollacott and Mead, 2014

Origin and global spread of

C9orf72

• • • • • • • Finnish population carrying the 232-kb haplotype Association between risk haplotype and expansion holds across the globe Single risk haplotype First appeared in the Finnish population 100 generation ago (58 128) – transported in the Finnish population?

Smith et al. (2013) in UK, Italy, Sweden: 157-479 generations ago In 500 A.D.(fall of Rome in 410 A.D.) “Viking Ordy” theory of spreading in Europe – reduced penetrance North America

• • • • • • • •

C9orf72

dominant inheritance high penetrance (anticipation ?) earlier onset than classic ALS rapid disease course (?) site of onset: mostly upper limbs or bulbar onset phenotype: – prominent UMN signs – cognitive impairment (bvFTD) – psychiatric features (hallucinations, paranoid behavior, delusions, suicidal thoughts atypical phenotypes – extrapyramidal features (CBS, PSP) – cerebellar features (OPCA, cerebellar ataxia, palatal myoclonus) association with other neurodegenerative diseases – AD controversial data – PD – CBS/PSP – HD-like sy – sCJD “intermediate alleles” ?

isolated reports 1.7% 0.2%

Psychiatric Diseases Knock et al. 2014

C9orf72:

broad clinical expression

Liu et al., August 2013

delusions, but also hallucinations apathy, loss of empathy, visuospatial deficits cerebellar features as ataxia episod memory loss Wollacott and Mead, 2014

0.9% Wollacott and Mead, 2014

October, 2013 177 190 107 103

33,3% vs 8,1% (C9 non carriers) Hallucinations = 4 Delusions = 5 Aggressiveness - hypomanic status = 1

Genotype-Phenotype

C9orf72

ALS, ALSCi/Bi, ALS/FTLD, FTLD/MND, FTLD, ALS/PD, ALS/MSA, ALS/PSP, ALS/CBS, PLS/CBS HDL, ATX, FTLD/PSYCH, (AD) !

common founder of Scandinavian origin shared in the Italian population survival

Milan cohort

C9ORF72

Repeat Expansion

Group FALS

FALS-U FALS-FTD FALS-M

SALS

SALS-U SALS-FTD SALS-M

CTRL Subjects 259

194 10 55

1275

1164 66 45

862

C9ORF72

RE 62

56

23.9%

28.9% 5 1

66

58 7 1

2

50.0% 1.8%

5.2%

5.0% 10.6% 2.2%

0.2%

• higher frequency in ALS-FTD patients Ratti et al., Neurobiol Aging, 2012

ALS/FTD Genetics in Italy: The SLAGEN CONSORTIUM ( > 4000 cases)

Gene

c9orf72 SOD1 FUS TARDBP ANG UBQLN2 OPTN PFN1 Altri geni

Totale Frequency

FALS SALS

23.9% 11.0% 5.1% 1.3% 6.7% 4.1% 3.0% 1.8% 1.2% 1.0% <1.0%

52.7%

1.2% 2.5% 0.5% 0.1% 0.5% 0.1% 0%

11.3% Frequency

FALS

40%

SALS

7% 12% 4% 4% 1-2% 1% 1% <1% <1% <1% <1% <1% <1% European ancestry Renton et al., 2014

C9orf72

in Italy

• 0, 17 % mutations in controls • 102.000 subjects in italy carrying a

C9orf72

expansion ! • How many developing clinical ALS, ALS/FTD?

• Anticipation ? Probably yes • Grey Zone (premutation with 23 - 30 expansion) •

C9orf72

represents a public health problem

Sensitivity 100% Specificity 67% (no pts. with normal cognition/behaviour and no familial history of ALS or FTD has C9ORF72 expansion)

Familial FTD/ALS (VS20) TDP43 neocortex hippocampus spinal cord MN cerebellum DeJesus-Hemandez et al., 2011

TDP43 NCI + NII smear 45kDa Glial Mackenzie et al., 2014 TDP43 pathology not associated to expansion lenght 25kDa

NCI positive for ubiquitin, ubiquilins and p62, negative for TDP-43

Mackenzie et al., 2014

Technology for diagnosis

repeat-primed PCR Amplicon-length analysis standard Southern blot modified Southern direct hybridisation

Clinical Phenotype !?

(no association between expansion size and clinical phenotype)

• substantial variation in repeat size in cerebellum, frontal cortex, blood • longer repeat size in cerebellum associated with < survival • expansion size not affecting disease phenotype (?) Lancet Neurol 2013

C9orf7

2: Somatic Mosaicism

Southern blot in 30 ALS, 16 ALS/FTD, 35 FTD Van Blitterswijk et al,

Lancet Neurol

2013

expansion size Akimoto et al., 2014 clinical phenotype ?

Double Mutations:

C9orf72

and……

Van Blitterswijk et al., 2012

Genetic Counseling and Screening Algorithm

ALS patient FALS

C9orf72 SOD1 TARDBP FUS

SALS no testing Dementia Atypical Features Onset < 40 yrs Geography

C9orf72 TARDBP FUS

LMN PDism Limb Girdle

SOD1 FUS SOD1 TARDBP C9orf72 TARDBP MAPT SOD1 FUS

Milano Algorithm, 2014

ALS

C9orf72

Non-Genetic Biomarkers Non-Genetic Biomarkers Patients’ Stratification Genetic Biomarkers Clinical onset Years

ALS: FTLD: 4-8 per 100.000

15-20 per 100.000 • 20-40% FTD/ALS carry the expansion, up to 50% with positive family history • men = women • average 55 years • de novo expansions • anticipation • unknown minimum number of repeats that confers phenotype • predictive testing only after mutation demonstrated in the family

Fong et al., 2012

FTD & ALS – Genetic Continuum

PNF1

EPHA4 SQSTM1 Al-Chalabi et al., Acta Neuropath, Sept. 2012, modified

Many genes, a common patway ? TDP-43 PNF1 LMN TDP-43 aggregates Turner et al., Lancet Neurol 2013

ALS:

TDP-43 as common final pathway for

C9orf72

? different mechanisms Different clinical phenotypes SLA FTD ……

Ruolo emergente alterata processazione RNA & hnRBPS Janssens and Van Broeckhoven, HMG 2013

TDP-43

cleavage into C-terminl fragments Colombrita et al., 2009 Janssens and Van Broeckhoven, HMG 2013

pTDP-43 diffusion in ALS/FTD

Heiko Braak • C9orf72 amplification induces a greater regional burden of lesions Brettschneider et al., 2014

Diffusione della patologia con pTDP-43 in SLA/FTD

STAGES

Stage 1

AREA

agranular motor neocortex (Brodman 4,6), brainstem motor nuclei of cranial nerves XII-X, VII, V and spinal a -motoneurons Stage 2 Stage 3 Stage 4 prefrontal neocortex (middle frontal gyrus), brainstem reticular formation, precerebellar nuclei (inferior olivary complex), pontine gray matter, and the red nucleus prefrontal neocortex (e.g., gyrus rectus, orbital gyri) and then postcentral neocortex and striatum (accumbens) anteromedial portion of the temporal lobe including the hippocampal formation When assigning stages, the extent is accorded more weight than the TDP-43 severity • at all stages, lesions accompanied by pTDP-43 oligodendroglial aggregates • C9orf72 amplification induces a greater regional burden of lesions • TDP-43 pathology propagated along axonal pathways Brettschneider et al., May 2013

intraxonal pTDP-43 aggregates a motoneurons – Layer 9 affected oligodendrocytes Immunoreactive oligodendrocytes Brettschneider et al., May 2013

BDNF sensibile CTF mRBP

intraaxonal pTDP-43 aggregates Hypoglossal Nuclei (XII) Superior accessory olivary nucleus Inferior olive Immunoreactive oligodendrocytes

Medium-sized projection neurons in the striatum Cerebellar cortical white matter and deep portions of the cerebellar granular layer Hippocampus: granular cells of the dentate fascia + pyramidal neurons in the Ammon’s horn (CA), Initaily in sector CA1-CA2 and then CA3-CA4

Anteromedial portions of the temporal lobe Neocortical Layers Pyramidal cells of the entorhinal region Entorhinal region Transentorhinal region

Diffusion Tensor Imaging (DTI)

• Multiple DTI studies consistently reported decreased FA within the CST in keeping with the involvement of the UMN in all cases of ALS • Extramotor involvement Agosta et al., 2010

AJNR 20!2

Cingulum Uncinate fasciculi

PET DTI

Filippini et al., Neurology, 2010

11 C-flumazenil (GABA A receptor) = reduced binding suggesting loss of interneuronal inhibitory circuits, inducing dysregulation of the glutamate system Turner et al., 2005

< FA in PLS vs ALS > > > DTI MRI + VBM VBM T B S S

pTDP-43 diffusion in ALS/FTD

Brettschneider et al., 2014

Vulnerabilità Selettiva vs Continuum

Bertram and Tanzi, J Clin Inv 2005

AMYOTROPHIC LATERAL SCLEROSIS and FRONTOTEMPORAL DEGENERATIONS 2012

Impatto sulla clinica Michael J Strong

5 to 15% 25 to 50% Strong et al., 2009

2014: A Spectrum of Dysfunction

ALS to FTD

ALS-FTD

A subgroup of ALS patients (up to 15%) meet criteria for Frontotemporal Dementia

FTD 4 variants

- frontal/behavioural variant (fvFTD)

- temporal variant (semantic dementia) - progressive non-fluent aphasia - logopenic

ALS ALS-FTD

………………spectrum ………...........

FTD

2012: A Spectrum of Dysfunction

mild

ALS with “mild” cognitive impairment

Larger proportion (~1/3) have cognitive deficits

Rackowicz and Hodges (1998) 38% Lomen-Hoerth et al (2003) 33% Ringholz et al. (2005) 37% Elamin et al (2010) 35%

ALS ALS-FTD ALS with “mild” cognitive impairment FTD

2012: A Spectrum of Dysfunction

ALS to FTD

ALS with “mild” cognitive impairment

Larger proportion (~1/3) have cognitive deficits

Rackowicz and Hodges (1998) 38% Lomen-Hoerth et al (2003) 33% Ringholz et al. (2005) 37% Elamin et al (2010) 35%

ALS Subclinical FTD? ALS-FTD FTD

Prevalence and patterns of cognitive impairment in sporadic ALS G.M. Ringholz, MD, PhD; S.H. Appel, MD; M. Bradshaw, PhD; N.A. Cooke, PhD; D.M. Mosnik, PhD; and P.E. Schulz, MD NEUROLOGY 2005;65:586-590

Age-matched control (n = 122) Conclusions:

These data confirm the presence of decline cognitive impairment in 50% of patients with ALS and particularly implicate executive dysfunction and mild memory in the disease process.

More severe impairment occurs in a subsetof patients with ALS and has features consistent with FTD.

Sporadic ALS (n = 136)

2012

1. Behaviour Change

ALS-FTD

Significant personality change “

not the same person

” Disinhibition, impulsivity Perseveration Eating behaviour change Loss of emotional understanding Withdrawn and apathetic Awareness Limited 2 .

Cognitive Change a) Executive Dysfunction Planning and organisational deficit Attention deficit, Inflexible thinking, Failure to initiate ideas b) Language Dysfunction Verbal expression reduced MND-Aphasia

Bak et al. 2001

ALS-FTD vs FTD

 Executive Dysfunction – ALS-FTD = FTD  Behaviour symptoms – ALS-FTD = FTD Psychotic symptoms (delusions) more prominent in fvFTD who develop ALS (50% vs 18.6%)

Lillo et al. 2010

 Language dysfunction MND-Aphasia similar but not identical to PNFA Deficits in comprehension and expression

Bak et al. 2001

 Distribution of Atrophy Similar but not identical to fvFTD ALS-FTD (8 cases) - frontal lobes FTD (39 cases) – frontal and anterior temporal PNFA (6 cases) – asymmetric perisylvian SD (9 cases) – asymmetric bitemporal atrophy

Snowden et al. 2007

Cognition in ALS-FTD

ALS-FTD

Executive Dysfunction Language Dysfunction Behaviour Dysfunction

Zago, Poletti, Silani, 2011

Cognition in classical ALS

ALS cog impairment ~ 35-40% of ALS cases

?

?

?

Cognition in classical ALS

ALS cog impairment ~ 35-40% of ALS cases

Executive Dysfunction ?

?

Letter Fluency

Ship, Shore, Snake, Silly, Send, Silver, Sonnet, Sun…

The most striking and consistently reported deficit in ALS

2006 Lomen Hoerth et al 2003, Ringholz et al, 2005, Flaherty-Craig et al,

Healthy control ALS Verbal Fluency Index Controls for motor speed Average time to ‘think’ of each word

Seconds

Vfi = time of test – time to copy words number of words

20 18 16 14 12 10 8 6 4 2 0 Healthy Controls ALS ALS-FTD

ALS: deficit V

fi

Puchan et al., 2007

Cognitive Studies of Fluency

• Deficits in semantic and design fluency – rapid generation

Abrahams et al. 2000

• Deficits in other executive functions tests (WCST, Tower of London)

Abrahams et al. 1997

• • • • • • • V

fi

deficit present very soon after diagnosis

Abrahams et al. 2005

V

fi

deficit exacerbated by respiratory dysfunction

Newsome-Davis et al. 2001

V

fi

deficit more prominent in

pseudobulbar palsy

these patients,

Abrahams et al. 1997

but not restricted to V

fi

deficit more prominent in

familial

in SOD1 familial,

Wicks et al. 2008

(non-SOD1) ALS patients, absent V

fi

deficit absent in Progressive Muscular Atrophy

Wicks et al. 2006

V

fi

deficit correlates with occular fixation abnormalities in ALS

al. 2009 Donaghy et Vfi

deficit does not correlate with emotional lability Palmieri et al. 2009

Why is Letter Fluency so Sensitive?

Initiation Deficit or Fatigue?

Rate of verbal fluency index (VFI) S words Slowed Word Generation Throughout the test

VFI- Average time to think of each word 14 12 10 8 6 4 2 0 30 60 90 120 150 180 210 240 270 300 Seconds Controls ALS

Significant effect of Group p< 0.02

Significant effect of Time p<0.001

Interaction NS Courtesy of S. Abrahams

Other Cognitive Processes in Letter Fluency?

1. Short Term Memory - Phonological Loop Phonological Store Subvocal Rehearsal Sand Sea Sun Surf Sail...

Rehearse 2. Simple Word Retrieval

Normal Sentence Completion Normal Object Naming

Further

• Intrinsic Word Generation : deficient • Working Memory: deficient

Abrahams et al., 2013,

Functional Imaging of Letter fluency in ALS

Konrad et al., 2006 Letter Fluency < fMRI activation Confrontation Naming Agosta et al. AJNR, 2010

Structural and Functional Imaging of ALS with Letter Fluency deficits White matter changes in 11 ALS with verbal fluency deficit in structural MRI Reduced PET flumazenil binding correlates with poor verbal fluency in ALS (< in right inferior frontal gyrus, superior temporal gyrus, anterior insula)

Wicks et al. 2007

Diffusion Tensor Imaging in ALS

Corpus Callosum FA differentiated ALS patients from healthy controls

Filippini et al. 2011

Attention and executive dysfunction correlate with reduced WM integrity in CC, CST, Uncinate Fas. Cingulum etc

Sarro et al., 2011

Executive dysfunction vs Slowed Processing Speed Correlations with pathway integrity

Primary Lateral Sclerosis

Neurology, 2007

Strong et al., 2006, 2009

• In 18 PLS, 61% with MCI • Deficits in executive functioning, working memory, learning efficiency • Oral word efficiency most sensitive measure, followed by delayed alternation as the

Piquard et al., 2006

• 20 PLS • None demented, but all with memory deficits reflecting an executive dysfunction • 17 with signs of premotor/or prefrontal cortex deficit • Dysorthographia observed

4,06 yrs average 3 items /12 total scores

< FA in PLS vs ALS > > > DTI MRI + VBM VBM T B S S

Cognition in classical ALS

Executive Dysfunction Language Dysfunction ?

Language dysfuntion

• language changes have received less attention • dissociation between noun (temporal) and verbal (> impaired ) (frontal) processing both in production and in comprehension tasks • linked to changes in Brodmann 44 and 45 Bak and Hodges, 2004

Language dysfuntion

• deficit not confined to verbs as words but extends to non-verbal association tasks requiring the processsing of abstract concepts of actions as opposed to that of objects • deficit in action processing confirmed in non-demented ALS patients

Language Dysfunction

 Word finding deficit in a subgroup of ALS

Abrahams et al. 2005; Rakovicz and Hodges 1999

 Writing errors in ALS-Dementia Japanese: Kana characters

Ichikawa et al. 2010

Language Pathways are affected in some ALS patients Reduced fMRI activation in inferior frontal, middle temporal, middle occipital gyri in ALS during Object Naming Reduced PET flumazenil binding correlates with poor naming in inferior/middle frontal gyri

Wicks et al. 2007

Cognition in classical ALS

Executive Dysfunction Language Dysfunction Behaviour Dysfunction

Behavioural Syndrome in classical ALS

 Apathy in 30% of cases (FrSBe)

Witgert and Salamone et al. 2010

 81 carers of ALS patients 41% moderate to severe apathy 20% moderate to severe abnormal and stereotypical behaviour 11% reached criteria for FTD

Lillo et al. 2011

 Self centeredness/selfishness Loss of interest/apathy Social disinhibition

Gibbons et al. 2008

11/16 6/16 2/16

Theory of Mind (ToM) - ALS  The ability to infer mental state (thoughts, feelings, desires, intentions) of another  To understand that they have different mental states from one’s own  Impairment in ToM is associated with early change in orbito/medial prefrontal cortex in FTD

What is he thinking?

a Theory of mind deficit in understanding

social situations (frontal)

Like Best Condition

2 0 6 4 12 10 8 MND Patients Healthy Controls With Distractor Without Distractor

Look At Condition

6 4 2 0 12 10 8 MND Patients Healthy Controls With Distractor Without Distractor

7/15 ALS patients scored within the abnormal range

Eye Gaze Test: Simple Theory of Mind * ALS Controls Cognitive:

Which picture is Jane thinking of?

Affective:

Which picture does Jane love?

Look At:

Which picture is Jane looking at?

Complex and Simple Emotion Recognition 36 12 6 0 30 24 18 Reading the Mind in the Eyes HAPPINESS SADNESS ANGER DISGUST FEAR SURPRISE Facial Expressions of Emotions Test MND Patients Healthy Controls 2 0 6 4 10 8 Anger Disgust MND Patients Controls Fear Happiness Sadness Surprise Girardi et al., 2010

ALS with subclinical FTD

ALS ALS-FTD ALS with ‘subclinical FTD’ Executive Language Social Cog or Behaviour

Screening in the Clinic:

The development of the Edinburgh Cognitive ALS Screen (ECAS)

Abrahams, Newton and Bak

Aim  To develop a 15-20 min multidomain screen  To be sensitive to cognitive impairment in ALS ALS-Typical Score  To be specific to impairment in ALS to distinguish from AD or low global performance ALS- Non-Typical Score  To minimize effect of physical disability – interchangeable tests

Screening in the Clinic:

The development of the Edinburgh Cognitive ALS Screen (ECAS)

Abrahams, Newton and Bak

VALIDATED the ITALIAN VERSION OF ECAS Poletti et al., 2014

Why Care about Cognition in ALS?

1. Marker: an early indicator of involvement of pathways within the prefrontal cortex 2. Heterogeneity in cognition (executive, language and behaviour) 3. Screening for cognitive impairment is effective when using the right tools 4. End of life decisions

How many ALS in a fvFTLD population ?

(Lomen-Hoerth

et al

, 2002) EMG 36 FTD clinical examination neuromuscular abnormalities definite ALS ( 14% ) EMG abnormalities in one limb (5.5%) Swallowing difficulty (16.5%)

6 5 2 1 4

ALS fasciculations (14%)

As a whole longitudinal studies demonstrate a minimal progression of cognitive decline in ALS patients

Elamin M., et al., 2012 -

ENCALS

• No conversion to FTD after 6 months in “mild” cognitive impaired ALS • FTD occurs in few ALS patients with frank executive and/or behavioural changes at baseline • Cognition is a useful clinical biomarker in ALS

26/05/2014

Neurologo

THERAPHY AISLA TEAM

Neuropsicologo

Psicologo research Psichiatra

NeuroBiomarkers of Frontotemporal Dysfunction

PET right inferior frontal gyrus superior temporal gyrus antorior insula

Voxel-based morphometry (VBM)

Grosskreutz et al., 2006

Direct correlations (cognitive functions/cortical atrophy) Task requiring action knowledge object knowledge

Diffusion tensor imaging (DTI)

 axial diffusivity of the AJNR, 2011 uncinate fasciculus (UF)

NiSALS - 2011

Diffusion tensor imaging (DTI)

Filippini et al., Neurology, 2010

More thalamic, posterior insula, cerebellar atrophy

NiSALS, Lancet Neurol 2011

C9orf72 Repeats :Phenotype & Genotype Correlations

Neurology 2013

Orla Hardiman Beaumont Hospital & Trinity College Dublin

DTI

Eye Movements – Eye Tracking

• Eye movement abnormalities are sensitive markers of neurological diseases and have been studied in a variety of neurological conditions (Garbutt et al., 2008; Meyniel et al.2005).

• The analysis of saccadic eye movements has been described as a useful tool for investigating neurological or psychiatric disorders in which the frontal lobe is impaired.

Eye tracking – Frontal function

• • Involvement of frontal function has recently been studied in neurodegenerative diseases, exploring ocular fixation with the aid of an eye tracking technology, thus suggesting its possible role in detecting the whole spectrum of frontal involvement characterizing cognitive pattern of ALS .

Anti-saccade paradigm is ideal in exploring frontal cognitive functions.

Anti-saccade paradigm

• In the anti-saccade paradigm (Brain, 2008) subjects are instructed not to make a reflexive saccade to an appearing lateral target but to make an intentional saccade to the opposite side. This ability depends on the integrity of the dorsolateral prefrontal cortex (Garbutt et al.

ANTISACCADE PARADIGM

Looks promising !

Poletti et al., in press, 2012

Cognition/Behaviour in ALS still debated !

but

Dept. Neurology Stroke Unit Laura Adobbati Luca Campana Andrea Ciammola Barbara Corrà Alberto Doretti Riccardo Doronzo Alberto Lerario Carolina Lombardi Luca Maderna Niccolò Mencacci Stefano Messina Claudia Morelli Barbara Poletti Davide Sangalli Nicola Ticozzi Federico Verde Istituto Auxologico Italiano “Dino Ferrari” Center University of Milan Medical School Laboratory of Neuroscience Antonia Ratti Patrizia Bossolasco Daniela Calini Claudia Colombrita Lidia Cova Valentina Diana Annamaria Maraschi Elisa Onesto Francesca Sassone Jenny Sassone Cinzia Tiloca Isabella Fogh Claudia Fallini Cinzia Calzarossa London, UK Boston, USA Stockholm, SV ICGEB Trieste Francisco E. Baralle Emanuele Buratti Fondazione IRCCS Istituto “Carlo Besta” Cinzia Gellera Barbara Castellotti, Viviana Pensato Caterina Mariotti, Franco Taroni University of Massachusetts Medical School John E. Landers, Chi-Hong Wu, Jenni Adams, Desiree M. Baron, Daryl A. Bosco, Andrew D. Fox, Paloma Gonzalez-Perez, Pamela, Katarzyna Piotrowska, Peter C. Sapp, Zuo-Shang Xu, Jill A. Zitzewitz Robert H. Brown Jr.

HSR, Milano Istituto Auxologico Italiano “Dino Ferrari” Center University of Milan Medical School

ITALIAN SLAGEN CONSORTIUM IRCCS Istituto Auxologico Italiano Fondazione IRCCS Istituto “Carlo Besta ”

NiSALS

Ospedale Maggiore - Università di Milano

Giacomo Comi Roberto Del Bo Stefania Corti

Università del Piemonte Orientale

Massimo Filippi Federica Agosta Elisa Canu Giancarlo Comi Sandra D’Alfonso Lucia Corrado

Università di Padova

Gianni Sorarù

Istituto Neurologico “Casimiro Mondino”

Cristina Cereda Univ. Brescia Univ. Firenze Univ. Catanzaro Univ. Napoli Andrea Falini Univ. Ferrara Univ. Pisa Univ. Roma

STRENGTH