Mendelian Genetics

Download Report

Transcript Mendelian Genetics

     The Scientific study of heredity 1850’s; 21 y.o.

Scientist + Mathematician Paper: 1865 “Father of Modern Genetics”

      Easy to grow Matures quickly Produces generations quickly Large # offspring Cross and self pollination *Each trait on a separate gene

Self Pollination: has both male and female parts

    Removal of Stamens Transfer of pollen from a white flower to the purple stigma (P 1 - parents) Carpel/peapod/seeds Plant the seeds (F 1 - First Generation) First Filial

   Parent generation = P Offspring of P generation = F1 Offspring of F1 generation = F2 Cross a homozygous dominant Tall flower with a homozygous recessive short flower. Give the F1 genotype and phenotype percents.

Tall = TT, short = tt

 Phenotype – the physical appearance of an organism. Determined by it’s alleles (maternal/paternal) “Photo”  Genotype – the genetic makeup of an organism “Genes” The many different alleles that an organism can possess: BB, Bb or bb (Often use the 1 st dominant trait) letter of the

 Homozygous – an individual who has the same alleles for a trait. Ex. 2 genes for cystic fibrosis (CC = homozygous dominant or cc = homozygous recessive)  Heterozygous – an individual who has different alleles for a trait. Ex. One gene for cystic fibrosis, one for normal (Cc)

  Results Statistics/Ratios  ◦ Conclusions Dominant/Recessive  4 Principles Notesheet

A trait is controlled by factors (genes) that occur in pairs

One gene in a pair can mask or hide the expression of the other gene (dominant vs recessive) Dominant allele: When only ONE of the alleles affects the trait.

(Use a CAPITAL letter) Recessive allele: the allele that is NOT expressed if there is a dominant allele present. (Use a small letter).

A pair of genes (alleles) separate during the formation of sex cells (gametes)

(Later learned that gametes are formed during meiosis…come together later to supply the alleles that form a trait)

The inheritance of one gene does not affect or depend on the inheritance of another gene *Mendel was looking at traits on different chromosomes…..

*

Modification

: Linked genes are inherited together on a chromosome) **EXCEPTION: crossing over .

        Handout: DOMINANT vs RECESSIVE Dark Hair Nonred hair Dark Skin Skin Pigment Brown eyes Near or far sighted Astigmatism Normal Hearing

Genetics Online Practice Problems More Online Genetics Problems HW: #1-5,7 Phenotype: % % Ratio: Genotype: % Hom. Dom.

% Het. Dom.

% Hom. Rec.

Ratio: *HW: Key, Cross, Punnett, Answer

   Neither gene dominates Blending of traits Notation: 2 different Capitol Letters Example: White Flowers x Red Flowers produce PINK flowers WW x RR = RW white red pink (HW #8-9)

 

BOTH genes are expressed Notation: 2 different Capitol Letters

Example: “ROAN” cows/horses White/Red hair dispersed evenly …looks pink (HW #7)

   Genes on the X chromosome Usually recessive; different chances male/female Ex: Color-blindness, hemophilia  NOTATION: How males and females inherit: X Y = Normal vision male X c X X Y = Color blind male c *More in males-50/50 X X = Normal vision female = Female color blind carrier X c X c = Color blind female (or written with hashmarks X ’ X ’ )

 males get their X from their mother  fathers pass their X to daughters only  females express the trait only if they get a copy from both parents.

 recessive in females; females can be ‘carriers’  ALWAYS expressed in males if present; can NEVER be carriers of X-linked traits Sex-Linked Inheritance Problem Sets (#20-24)

  White eyed fruit flies are the result of an X linked recessive gene. Show the results from a cross between a red-eyed male and a white-eyed female Drosophila.  Key: Cross: X R or Y x X r X r X Y x X ’ X ’ Indicate the results of each sex separately for genotype and phenotype.

 Answer *Phenotype: “Carrier Females” are considered “Unaffected/Normal”

 There are more than 2 alleles in the gene pool BUT an individual inherits only TWO (one allele from mom, and one from dad)  When there are 4 or more possible phenotypes for a particular trait.  Example: Blood Typing: Inherited A,B,O   Six GENOTYPE possibilities ??

= FOUR different bloodtypes: ??

(#10-12)

 3 different possible alleles for the blood type gene: Co-dominant A or B, or recessive O     4 possible Phenotypes: Genotypes: Type A Type B Type AB Type O I A I A , I A I i I B I B , I B I i I A I B I i I i (AA,AO) (BB,BO) (AB) (OO) (#10-12)

 If a type O person marries a type AB person, what blood type could occur in their children? Remember, type O is recessive to both A and B  Key  Cross i i x I A I B  Answer (#10-12)

DiHybrid Cross: Independent Assortment (#13-19) 1. Determine all possible combinations of alleles in the gametes for each parent.

(#13-19)

 Mendelian Cross:   In Pea Plants, the flower color Purple is dominant to white.

If two heterozygous plants are crossed, what % of the offspring will be white?

Rules of Multiplication n and Addition 10.35

PROBABILITY: Same set-up: what is the probability that the offspring will be homozygous recessive?

Probability that an egg from the F a p ( Pp ) will receive allele = 1/2.

Probability that a sperm from the F 1/2.

1 will receive a p allele = The overall probability that two recessive alleles will unite, one from the egg the sperm, simultaneously, at fertilization is: 1/2 X 1/2 = 1/4.

and one from

   Pedigree charts follow a genetic mutation/disease through several generations of a family.

You can determine what chance offspring has of having a disease based on family history and Punnett Square.

◦ ◦ ◦ ◦ ◦ The main diseases that are tracked this way are: Tay-sachs Huntingtons Colorblindness Hemophilia Cystic fibrosis

*Back of Problems Autosomal Recessive (nn)

Autosomal Dominant (D_)

*Dominant = Gray, Normal wings= Bb Vv Or b+bvg+vg Where + is dominant

+

• Calculating the frequency of crossing-over reveals the linear order of linked genes on a chromosome.

• Total Recombinant/Total # Offspring X 100 • = 11% where 1% recombination = 1 map unit So the loci are 11 map units apart on the same chromosome (11 centimorgans) The closer two genes are to each other, the less likely crossing over will occur; genes are linked.