Transcript 4+2
Pericyclic Reactions Cycloaddition + ( Electrocyclization )n ( )n Ethylene -Molecular Orbitals 2 -a n tib o n d in g LU M O A 171 nm 167 kcal/mol p -o rb ita ls S 1 -b o n d in g HOMO IR 800 nm visible 400 nm UV 200 nm 1,3-Butadiene from Ethylene A LU M O A A LU M O S S A HOMO HOMO S S S 1,3-Butadiene -Molecular Orbitals 214 nm 133 kcal/mol IR 800 nm visible 400 nm UV 200 nm 1,3,5-Hexatriene -Molecular Orbitals A S LU M O A HOMO S 258 nm 109 kcal/mol A S IR 800 nm visible 400 nm UV 200 nm Butadiene: Orbital Coefficients A Frontier Molecular Orbitals FMOs S A S The Allylic System: Allyl Cation S + A LU M O S HOMO The Allylic System: Allyl Radical S LUM O A SOM O S HOMO The Allylic System: Allyl Anion S A S LUM O HOMO - Cycloaddition: Diels-Alder Reaction An Allowed [4+2] Cycloaddition + d ie n e *4 d ie n o p h ile A 2 -a ntibo n d in g LUM O A LUM O S *3 HOMO 2 A S 1 S 1 -b on d in g HOMO e th y le n e b u ta d ie n e Diels-Alder Reaction: The Effect of Electron Withdrawing Groups + EW G EW G d ie n e d ie n o p h ile *4 A 2 -a ntibo n d in g LUM O LUM O S *3 A EW G HOMO 2 A S EW G 1 -b on d in g HOM O 1 S b u ta d ie n e d e a c tiv a te d e th y le n e [4+2]-Cycloaddiitions + + + S A LU M O S HOMO Diels-Alder Reaction: Mechanism *4 A 2 -a ntibo n d in g LUM O A LUM O S *3 HOMO 2 A S 1 S 1 -b on d in g HOMO e th y le n e b u ta d ie n e Diels-Alder Reaction: The Endo Effect Secondary Effect O What About a [2+2] Cycloaddition? 2 -a n tib o n d in g LU M O 2 -a n tib o n d in g L U M O (H O M O *) A A light (hn) S S 1 -b o n d in g HOMO 1 -b o n d in g HOMO Thermally Allowed Cycloadditions 4n+2 Rule 2 A 4 6 S 8 A S LUMOs [4+2]=6 [6+4]=10 [8+6]=14 HOMOs A S A S 4n+2; n=1,2,3,4….. 2 Photochemically Allowed Cycloadditions 4n Rule [2+2]=4 A 4 [4+4]=8 6 [6+6]=12 S 8 A S LUMOs HOMOs A S A S 4n; n=1,2,3,4….. and [2+6]=8; [8+4]=12 [8+8]=16 Summary of Cycloadditions 2 2 4 6 8 10 P T P T P T P T P T T P Thermal 4n+2 4 6 P T P 8 T P T 10 P T P Photochemical 4n P T T P Electrocyclizations 1,3-Butadiene-Cyclobutene th e rm a l hn tra n s con d is d is con hn E ,Z th e rm a l E ,E c is (E,E)-1,3-Butadiene-Cyclobutene CH3 p h o to c he m ica l H HOMO* H e x cite d sta te CH3 d isro ta to ry CH3 S 3 * S CH3 hn CH3 CH3 th e rm a l H H HOMO g ro un d s ta te co n ro ta to ry CH3 CH3 A 2 A (E,Z)-1,3-Butadiene-Cyclobutene CH3 CH3 p h o to c he m ica l H HOMO* e x cite d s ta te CH3 CH3 d isro ta to ry H S 3 * S hn CH3 th e rm a l H CH3 HOMO g ro un d s ta te co n ro ta to ry CH3 H A 2 A CH3 (E,Z,E)-1,3,5-Hexatriene-Cyclohexadiene th erm a l d is co n (E ,Z ,E ) hn hn tra n s con d is th erm al (E ,Z ,Z ) (E,Z,E)-1,3,5-Hexatriene-Cyclohexadiene Orbitals CH3 p h o to c h e m ica l HOMO* e xcite d sta te CH3 co n ro ta to ry H 3C CH3 A 4 * A tra n s hn CH3 HOMO g ro u n d sta te th e rm a l d is ro ta to ry S 3 CH3 S cis CH3 CH3 Electrocyclizations n=1,2,3,4… thermal photochemical 4n con dis 4n+2 dis con Violations “There are none!” Woodward and Hoffmann,The Conservation of Orbital Symmetry