DRNI and Distributed Protection Examples Maarten Vissers 2011-09-26 v01 Based on slides presented in 802.1 IW meeting in Nanjing on Thursday Sept 22 Details have.

Download Report

Transcript DRNI and Distributed Protection Examples Maarten Vissers 2011-09-26 v01 Based on slides presented in 802.1 IW meeting in Nanjing on Thursday Sept 22 Details have.

DRNI and Distributed Protection Examples
Maarten Vissers
2011-09-26
v01
Based on slides presented in 802.1 IW meeting in Nanjing on Thursday Sept 22
Details have been added to reflect the discussions during the presentation
MAC Address considerations have been added based on discussions during
the presentation and questions have been added triggered by comment that
CFM has been developed under the assumption that MAC address of MEP/MIP
can be changed during the lifetime of the EC
1
DRNI Objectives
Definition of E-NNI includes either


E-NNI links
DRNI operation can be added in a
hitless manner to existing E-NNI


Intra-DAS link is I-NNI
E-NNI links + Intra-DAS links

How to deal with time sharing network link and
intra-DAS link? Network link is I-NNI!
DRNI with 2x2 nodes and 2x1 E-NNI
links should recover services after
failure of one of the four nodes
DRNI with 2x2 nodes and 2x2 E-NNI
links should recover services after
failure of 2x1 of the 2x2 nodes; the Xlinks enable this capability
DRNI can be deployed on

PB portal, PBB IB-BEB portal, PBB-TE IBBEB portal, OTN TB portal, SDH TB portal,
MPLS S-PE portal, MPLS-TP S-PE portal




Similar requirement exist for protection
switching of individual service instances
Carrier networks are in operation before
inter-carrier services are added
Individual E-NNI interfaces are added to
existing nodes
Those nodes are already interconnected via
the domain they belong to; i.e. network links
already exist
DRNI operation should be added to those
E-NNI interfaces, without disturbing the
existing ECs
DRNI interoperates with the following
survivability mechanisms in carrier
networks:


ETH SNCP, ERP, ETH CL-SNCG/I
protection, TESI protection, ODUk SNCP,
tLSP SNCP, VC-n SNCP
MSTP/MVRP, GMPLS,
2
DRNI Objectives – MAC Address & MEP ID
DRNI presents the Network Operator
(NO) MEP functions for an EC on the
different E-NNI ports as one virtual
NO MEP function with one C-MAC
Address and one MEP ID
Question: Is the same MEP ID really
required? Evaluate requirement from
perspective of:
Question: Is the same C-MAC address
really required? Evaluate requirement
from perspective of:
DRNI presents the Service Provider
(SP) MIP functions for an EC on the
different E-NNI ports as one virtual
SP MIP function with one C-MAC
Address
•
CFM (CCM, LBM/R, SLM/R, LMM/R,
DMM/R, …) between NO MEP on UNI-N and
E-NNI ports and MIP functions on I-NNI ports
inside carrier network
•
CFM (CCM) between NO MEP functions on
UNI-N and E-NNI ports
Question: Is the same C-MAC address
really required? Evaluate requirement
from perspective of:
•
B-MAC learning inside B-VLAN relays
•
C-MACB-MAC learning inside c6.10 PIP
function
•
CFM (LBM/R, LTM/R) between SP MEPs on
UNI-N ports and MIPs on E-NNI ports
•
Translation of ‘BSI Group Address’ into
‘Default Backbone Destination (DBD)’ (and
vice versa) inside c6.11 CBP function
•
B-MAC learning inside B-VLAN relays
•
C-MACB-MAC learning inside c6.10 PIP
function
3
DRNI Objectives – MAC Address & MEP ID
DRNI presents the E-NNI MEP
functions for an EC on the different
E-NNI ports as one virtual E-NNI MEP
function with one C-MAC Address
and one MEP ID
Question: Is the same C-MAC address
really required? Evaluate requirement
from perspective of:
•
CFM (CCM, LBM/R, SLM/R, LMM/R,
DMM/R, …) between E-NNI MEP functions
(Data Plane Model I), or between E-NNI
MEP functions on E-NNI or Intra-DAS ports
and DRNI MIP functions on Intra-DAS or ENNI ports (Model II)
•
C-MAC learning inside S-VLAN relays in
DRNI
Question: Is the same MEP ID really
required? Evaluate requirement from
perspective of:
•
CFM (CCM) between E-NNI MEP functions
on E-NNI ports (model I), or E-NNI MEP
functions on E-NNI or Intra-DAS ports
(model II)
4
Distributed Protection Objectives – MAC Address &
MEP ID
Distributed Protection presents the
Working SNCP MEP functions for an
EC on the different I-NNI ports as one
virtual Working SNCP MEP function
with one C-MAC Address and one
MEP ID
Distributed Protection presents the
Protection SNCP MEP functions for
an EC on the different I-NNI ports as
one virtual Protection SNCP MEP
function with one C-MAC Address
and one MEP ID
Question: Is the same C-MAC address
really required? Evaluate requirement
from perspective of:
•
CFM (CCM, LBM/R, SLM/R, LMM/R,
DMM/R, …) between SNCP MEP on I-NNI
ports and MIP functions on I-NNI ports inside
carrier network
•
B-MAC learning inside B-VLAN relays
•
C-MACB-MAC learning inside c6.10 PIP
function
•
Translation of ‘BSI Group Address’ into
‘Default Backbone Destination (DBD)’ (and
vice versa) inside c6.11 CBP function
Question: Is the same MEP ID really
required? Evaluate requirement from
perspective of:
•
CFM (CCM) between SNCP MEP functions
on I-NNI ports
5
Communication protocols DRNI & DSNCP
Portal
XXX Node 1
XXX Node 2
Half-DSS
Half-DAS
DSS  DSS
DSS
Half-DSS
Half-DAS
DAS  DAS
DAS
Half-DAS
Half-DAS
DAS
Half-DSS
DSS
XXX Node 3
Half-DSS
XXX Node 4
Portal
6
PB Portal with DRNI;
EC SNCP in carrier network
Two Data Plane models (I, II) are presented, which differ in
the location of the EC Network Operator MEP and EC E-NNI
MEP functions
I.
On E-NNI port; i.e. as close as possible to physical ENNI link
II.
On Active Gateway; i.e. either on E-NNI port, or on IntraDAS port
7
PB Data Plane Model (I)
(example with EC SNCP)
EUI48: @O
MAC:
@S
@P
@S
@K
@K
@A @A @B @B
@A @W @P @B
@C @C @D @D
@C @W @P @D
S-Relay
Half-DAS
Half-DSS
19.2/3/5
6.9.9.5b
6.9.9.5b
6.9.9.5b
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
6.7
6.7
6.7
802.3
802.3
802.n
19.2/3/5
6.9.9.5b
6.9.9.5b
8.5
Link
MEP
E-NNI
Link 1
EC NO
MIP
EC SNCP
MEP
19.2/3/5
19.2/3/5
6.9/9.5b
19.2/3/5
19.2/3/5
19.2/3/5
6.9/9.5b
6.9/9.5b
6.9/9.5b
6.9/9.5b
8.5
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
19.2
19.2
6.7
6.7
6.7
6.7
6.7
6.7
6.7
802.n
802.n
802.n
802.n
802.n
802.n
802.n
E-NNI
Link 2
I-NNI
Link a
PNP
19.2/3/5
Half-DAS
Half-DSS
19.2/3/5
19.2/3/5
@R
@S
@Q
@S
S-Relay
PNP
EC NO
MEP
EC SP
MIP
EC E-NNI
MEP
@L
@L
Network Link
Intra-DSS Link
I-NNI
Link b
E-NNI
Link 3
E-NNI
Link 4
Intra-DAS Link (I-NNI)
Network Operator MA has its MEP
on E-NNI port.
Intra-DAS NNI port has only MIP
function, as Intra-DAS link is
considered part of operator
network.
DSS: Distributed SNC protection Sublayer
Default mode: MAC Address of MEP and MIP functions is
inherited from EUI-48 of NNI ports (e.g. @A, @B, @C, @D, @K,
@L, @O, @P, @Q, @R).
Special mode: EUI-48 value is not inherited in the following
cases:
• EC MEP/MIP functions on E-NNI ports must have common
MAC Address (@S) (replaces @O,P,Q,R)).
• Working EC SNCP MEP/MIP functions on I-NNI ports must
have common MAC Address (@W) (replaces @A,C).
• Protection EC SNCP MEP/MIP functions on I-NNI ports must
8
have common MAC Address (@P) (replaces @B,D).
PB Data Plane Model I
(example with EC SNCP)
Per MEP/MIP set Per MEP/MIP set
MAC address
MAC address
configuration:
configuration:
@A, @W
@B, @P
EUI48:
MAC:
@A @B @B
@W @P @B
@A
@A
Half-DAS
Intra-DAS link can be combined with
Network Link
SVIDs 1..M: network link
SVIDs M+1..N: intra-DSS link
SVIDs N+1..4094: intra-DAS link
Half-DSS
19.2/3/5
19.2/3/5
6.9.9.5b
6.9.9.5b
8.5
8.5
19.2
19.2
6.7
6.7
802.n
802.n
Network Link
Intra-DSS Link
Intra-DAS Link
DSS: Distributed SNC protection Sublayer
I-NNI
Link a
9
PB Data Plane Model I
(example with EC SNCP)
EUI48: @O
MAC:
@S
@P
@S
@K
@K
@B
@A@P/B?@B
@A
@A @W/A?
@C @C @D @D
@C @W @P @D
@B
S-Relay
Half-DAS
Half-DSS
X
19.2/3/5
6.9.9.5b
6.9.9.5b
6.9.9.5b
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
6.7
6.7
6.7
802.3
802.3
802.n
19.2/3/5
6.9.9.5b
6.9.9.5b
8.5
Link
MEP
E-NNI
Link 1
E-NNI
Link 2
EC NO
MIP
EC SNCP
MEP
19.2/3/5
19.2/3/5
6.9/9.5b
19.2/3/5
19.2/3/5
19.2/3/5
6.9/9.5b
6.9/9.5b
6.9/9.5b
6.9/9.5b
8.5
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
19.2
19.2
6.7
6.7
6.7
6.7
6.7
6.7
6.7
802.n
802.n
802.n
802.n
802.n
802.n
802.n
I-NNI
Link a
PNP
19.2/3/5
Half-DAS
Half-DSS
19.2/3/5
19.2/3/5
@R
@S
@Q
@S
S-Relay
PNP
EC NO
MEP
EC SP
MIP
EC E-NNI
MEP
@L
@L
Network Link
Intra-DSS Link
I-NNI
Link b
E-NNI
Link 3
E-NNI
Link 4
Intra-DAS Link (I-NNI)
Standby E-NNI
Gateway for EC
Standby SNCP
Gateway for EC
Active SNCP
Gateway for EC
Active E-NNI
Gateway for EC
EC MIP functions on Standby SNCP Gateway do not need to
use common MAC address @W/@P; instead those can inherit
MAC address from EUI-48 (@A, @B).
Now it is possible to do loopback between EC SNCP MEP
functions and those MIP functions.
10
PB Data Plane Model I
(example with EC SNCP)
EUI48: @O
MAC:
@S
@P
@S
@K
@K
@D
@C @C @P/D?@D
@C@W/C?
@D
@A @A @B @B
@A @W @P @B
S-Relay
Half-DAS
Half-DSS
19.2/3/5
19.2/3/5
6.9.9.5b
6.9.9.5b
6.9.9.5b
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
6.7
6.7
6.7
802.3
802.3
802.n
19.2/3/5
6.9.9.5b
6.9.9.5b
8.5
Link
MEP
E-NNI
Link 1
E-NNI
Link 2
EC NO
MIP
EC SNCP
MEP
19.2/3/5
19.2/3/5
6.9/9.5b
19.2/3/5
19.2/3/5
19.2/3/5
6.9/9.5b
6.9/9.5b
6.9/9.5b
6.9/9.5b
8.5
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
19.2
19.2
6.7
6.7
6.7
6.7
6.7
6.7
6.7
802.n
802.n
802.n
802.n
802.n
802.n
802.n
I-NNI
Link a
PNP
19.2/3/5
Half-DAS
Half-DSS
X
19.2/3/5
@R
@S
@Q
@S
S-Relay
PNP
EC NO
MEP
EC SP
MIP
EC E-NNI
MEP
@L
@L
Network Link
Intra-DSS Link
I-NNI
Link b
E-NNI
Link 3
E-NNI
Link 4
Intra-DAS Link (I-NNI)
Standby E-NNI
Gateway for EC
Active SNCP
Gateway for EC
Standby SNCP
Gateway for EC
Active E-NNI
Gateway for EC
EC MIP functions on Standby SNCP Gateway do not need to
use common MAC address @W/@P; instead those can inherit
MAC address from EUI-48 (@C, @D).
DSS: Distributed SNC protection Sublayer
Now it is possible to do loopback between EC SNCP MEP
11
functions and those MIP functions.
PB Data Plane Model II
(example with EC SNCP)
EUI48: @O
MAC:
@S
@P
@S
@K
@S
@A @A @B @B
@A @W @P @B
@C @C @D @D
@C @W @P @D
S-Relay
Half-DAS
Half-DSS
19.2/3/5
6.9.9.5b
6.9.9.5b
6.9.9.5b
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
6.7
6.7
6.7
802.3
802.3
802.n
19.2/3/5
6.9.9.5b
6.9.9.5b
8.5
Link
MEP
E-NNI
Link 1
E-NNI
Link 2
EC NO
MIP
EC SNCP
MEP
19.2/3/5
19.2/3/5
6.9/9.5b
19.2/3/5
19.2/3/5
19.2/3/5
6.9/9.5b
6.9/9.5b
6.9/9.5b
6.9/9.5b
8.5
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
19.2
19.2
6.7
6.7
6.7
6.7
6.7
6.7
6.7
802.n
802.n
802.n
802.n
802.n
802.n
802.n
PNP
19.2/3/5
Half-DAS
Half-DSS
19.2/3/5
19.2/3/5
@R
@S
@Q
@S
S-Relay
PNP
EC NO
MEP
EC SP
MIP
EC E-NNI
MEP
@L
@S
Network Link
Intra-DSS Link
I-NNI
Link a
I-NNI
Link b
E-NNI
Link 3
E-NNI
Link 4
Intra-DAS Link (E-NNI)
Network Operator MA has its MEP on
active Gateway node (i.e. either E-NNI port
or Intra-DAS NNI port).
Intra-DAS link is considered part of E-NNI.
Intra-DAS port contains EC NO MEP and
EC E-NNI MEP functions.
DSS: Distributed SNC protection Sublayer
Default mode: MAC Address of MEP and MIP functions is
inherited from EUI-48 of NNI ports (e.g. @A, @B, @C, @D, @K,
@L, @O, @P, @Q, @R).
Special mode: EUI-48 value is not inherited in the following
cases:
• EC MEP/MIP functions on E-NNI and Intra-DAS ports must
have common MAC Address (@S) (replaces @O,P,Q,R,K,L).
• Working EC SNCP MEP/MIP functions on I-NNI ports must
have common MAC Address (@W) (replaces @A,C).
• Protection EC SNCP MEP/MIP functions on I-NNI ports must
12
have common MAC Address (@P) (replaces @B,D).
PB Data Plane Model II
(example with EC SNCP)
Per MEP/MIP set Per MEP/MIP set
MAC address
MAC address
configuration:
configuration:
@A, @W, @S
@B, @P
EUI48:
MAC:
@A @A @A
@S @A @W
Half-DAS
Intra-DAS link can be combined
with Network Link
SVIDs 1..M: network link
SVIDs M+1..N: intra-DSS link
SVIDs N+1..4094: intra-DAS link
Half-DSS
19.2/3/5
19.2/3/5
6.9.9.5b
6.9.9.5b
8.5
8.5
19.2
19.2
6.7
6.7
802.n
802.n
Network Link
Intra-DSS Link
Intra-DAS Link
DSS: Distributed SNC protection Sublayer
@B @B
@P @B
I-NNI
Link a
13
PB Data Plane Model II
(example with EC SNCP)
EUI48: @O
MAC:
@S
@P
@S
@K
@S
@B
@A@P/B?@B
@A
@A @W/A?
@C @C @D @D
@C @W @P @D
@B
S-Relay
Half-DAS
Half-DSS
X
19.2/3/5
6.9.9.5b
6.9.9.5b
6.9.9.5b
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
6.7
6.7
6.7
802.3
802.3
802.n
19.2/3/5
6.9.9.5b
6.9.9.5b
8.5
Link
MEP
E-NNI
Link 1
E-NNI
Link 2
EC NO
MIP
EC SNCP
MEP
19.2/3/5
19.2/3/5
6.9/9.5b
19.2/3/5
19.2/3/5
19.2/3/5
6.9/9.5b
6.9/9.5b
6.9/9.5b
6.9/9.5b
8.5
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
19.2
19.2
6.7
6.7
6.7
6.7
6.7
6.7
6.7
802.n
802.n
802.n
802.n
802.n
802.n
802.n
I-NNI
Link a
PNP
19.2/3/5
Half-DAS
Half-DSS
19.2/3/5
19.2/3/5
@R
@S
@Q
@S
S-Relay
PNP
EC NO
MEP
EC SP
MIP
EC E-NNI
MEP
@L
@S
Network Link
Intra-DSS Link
I-NNI
Link b
E-NNI
Link 3
E-NNI
Link 4
Intra-DAS Link (E-NNI )
Standby E-NNI
Gateway for EC
Standby SNCP
Gateway for EC
Active SNCP
Gateway for EC
Active E-NNI
Gateway for EC
EC MIP functions on Standby SNCP Gateway do not need to
use common MAC address @W/@P; instead those can inherit
MAC address from EUI-48 (@A, @B).
Now it is possible to do loopback between EC SNCP MEP
functions and those MIP functions.
14
PB Data Plane Model II
(example with EC SNCP)
EUI48: @O
MAC:
@S
@P
@S
@K
@S
@D
@C @C @P/D?@D
@C@W/C?
@D
@A @A @B @B
@A @W @P @B
S-Relay
Half-DAS
Half-DSS
19.2/3/5
19.2/3/5
6.9.9.5b
6.9.9.5b
6.9.9.5b
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
6.7
6.7
6.7
802.3
802.3
802.n
19.2/3/5
6.9.9.5b
6.9.9.5b
8.5
Link
MEP
E-NNI
Link 1
E-NNI
Link 2
EC NO
MIP
EC SNCP
MEP
19.2/3/5
19.2/3/5
6.9/9.5b
19.2/3/5
19.2/3/5
19.2/3/5
6.9/9.5b
6.9/9.5b
6.9/9.5b
6.9/9.5b
8.5
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
19.2
19.2
6.7
6.7
6.7
6.7
6.7
6.7
6.7
802.n
802.n
802.n
802.n
802.n
802.n
802.n
I-NNI
Link a
PNP
19.2/3/5
@R
@S/R?
Half-DAS
Half-DSS
X
19.2/3/5
@Q
@S
S-Relay
PNP
EC NO
MEP
EC SP
MIP
EC E-NNI
MEP
@L
@S/L?
Network Link
Intra-DSS Link
I-NNI
Link b
E-NNI
Link 3
E-NNI
Link 4
Intra-DAS Link (E-NNI )
Active E-NNI
Gateway for EC
Active SNCP
Gateway for EC
Standby SNCP
Gateway for EC
Standby E-NNI
Gateway for EC
EC MIP functions on Standby SNCP Gateway do not need
to use common MAC address @W/@P; instead those can
inherit MAC address from EUI-48 (@C, @D).
EC MIP functions on Standby E-NNI Gateway do not
need to use common MAC address @S; instead those
can inherit MAC address from EUI-48 (@L, @R).
Now it is possible to do loopback between EC SNCP MEP
functions and those MIP functions.
Now it is possible to do loopback between EC E-NNI
15
MEP functions and those MIP functions.
PB Bridge Model of DAS
(example with EC SNCP)
@A
@S
@W @P
@W @P
@B
@C
@D
S-Relay
S-Relay
Half-DSS
EC NO MEP
EC SP MIP
19.2/3/5
19.2/3/5
Half-DSS
19.2/3/5
EC E-NNI MEP
EC NO MIP
19.2/3/5
19.2/3/5
19.2/3/5
EC SNCP MEP
6.9.9.5b
Link
MEP
@S
6.9/9.5b
8.5
6.9.9.5b
6.9.9.5b
6.9/9.5b
6.9/9.5b
8.5
Half-DAS
8.5
8.5
8.5
8.5
Half-DAS
19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
802.3
802.3
802.n
802.n
802.n
802.n
802.n
802.n
802.n
802.n
E-NNI
Link 1
E-NNI
Link 2
I-NNI
Link a
Network Link
Intra-DSS Link
I-NNI
Link b
E-NNI
Link 3
E-NNI
Link 4
Intra-DAS Link
Steve’s proposal
Is there an alternative?
DSS: Distributed SNC protection Sublayer
16
PB Logical Bridge Model for DRNI and DSNCP
(example with EC SNCP)
@A
@B
@D
@C
S-Relay
S-Relay
6.9.9.5b
6.9.9.5b
8.5
19.2/3/5
8.5
19.2/3/5
19.2/3/5
6.9.9.5b
6.9.9.5b
6.9/9.5b
6.9/9.5b
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
6.7
6.7
6.7
6.7
802.n
802.n
802.n
802.n
6.14
6.14
19.2/3/5
Network Link
I-NNI
Link a
@S
I-NNI
Link b
@W @P
S-Relay
DSS
6.9.9.5b
6.9.9.5b
8.5
8.5
19.2/3/5
6.14
19.2/3/5
19.2/3/5
8.5
6.9.9.5b
6.9/9.5b
DAS
8.5
8.5
6.14
6.9.9.5b
19.2
19.2
19.2
19.2
19.2
19.2
6.7
6.7
6.7
6.7
6.7
6.7
802.3
802.3
802.n
802.n
802.n
802.n
E-NNI
Link 1
DSS: Distributed SNC protection Sublayer
E-NNI
Link 2
E-NNI
Link 3
E-NNI
Link 4
I-NNI
Link a
I-NNI
Link b
17
Notes/Observations PB Portal
Data Plane Model
Bridge Model of DAS






Use of MAC Address values @S and
@W/@P at multiple locations reduces
ability to perform connectivity fault
localization
Physical subsystem is identified either by
build in EUI-48 value, or by operator
configured EUI-48 value; default MAC
Address is inherited from physical
subsystem
Distributed protection/restoration introduces
requirement to configure MAC Address of
selected MEP/MIP sets (on a service
instance (EC) basis); not
required/supported today
EC NO MA supports endpoint on E-NNI
port card
I-NNI port may have to support network
link, intra-DSS link and intra-DAS link and
the associated MAC Address values


Removes the ability to localize
misconnection in a Half-DAS function due
to use of common MAC address values
(@S)
Require that Intra-DAS link port uses EC
NO MEP and EC E-NNI MEP functions and
@S
EC NO MA does not always support
endpoint on E-NNI port card; instead
endpoint may be at active gateway node,
and the E-NNI port is behind the Intra-DAS
link
18
PBB IB-BEB Portal with DRNI;
EC SNCP in carrier network
Two Data Plane models (I, II) are possible, which differ in
the location of the EC Network Operator MEP and EC E-NNI
MEP functions; see PB slides for the differences. Data Plane
model I is used in the slides hereafter
Two data plane models (1,2) are possible, which differ in the
presence of a single or multiple switch fabrics:
1)
Separate B-VLAN switch fabric and S-VLAN switch fabric
2)
Combined B-/S-VLAN switch fabric
19
DRNI in PBBN IB-BEBs – Multi-domain PBBN
Instead it will be necessary to protect
the individual S-VLAN connections
by means of G.8031 ETH SNC
Protection. Working and Protection
S-VLAN connections must be carried
by disjoint B-VLANs in each PBBN
and by disjoint LANs between PBBN
domains
W P
IB-BEB
SNCP
Carrier A
PBBN 1
PBBN 2
DSNCP
IB-BEB
IB-BEB DSNCP
PBBN 3
Carrier B
For the case the carrier network
consists of multiple PBBN domains
(e.g. PBBN 1, PBBN 2), protection of
the S-VLAN is not possible by means
of B-VLAN recovery under all
conditions
DSNCP
PBBTEN 4
SNCP
IB-BEB
20
PBB Data Plane Model I/1 (separate B- and S-VLAN fabrics)
(example with EC SNCP)
EUI48: @O
MAC:
@S
@P
@S
@K
@K
@A @A @B @B
@A @W @P @B
@C @C @D @D
@C @W @P @D
S-Relay
Half-DSS
19.2/3/5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
8.5
6.10
6.14
6.9, 9.5b
8.5
8.5
19.2
19.2
6.7
6.7
802.3
802.3
E-NNI
Link 2
BVLAN
MEP
6.9, 9.5b
8.5
6.10
6.14
19.2/3/5
19.2/3/5
19.2/3/5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
8.5
8.5
8.5
8.5
6.10
6.10
6.10
6.10
19.2
19.2
6.14
6.14
6.14
6.14
6.7
6.7
802.3
802.3
6.14
6.14
6.14
6.11, 9.5c
6.11, 9.5c
6.11, 9.5c
19.2/3/5
19.2/3/5
19.2/3/5
CBP
E-NNI
Link 1
19.2/3/5
Network
Virtual
Link
6.14
6.14
6.14
6.11, 9.5c
6.11, 9.5c
6.11, 9.5c
19.2/3/5
19.2/3/5
19.2/3/5
B-Relay
Link
MEP
19.2/3/5
19.2/3/5
19.2/3/5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
8.5
8.5
19.2
19.2
19.2
6.7
6.7
802.n
802.n
I-NNI
Link a
I-NNI
Virtual
Link a
19.2/3/5
19.2/3/5
19.2/3/5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
8.5
8.5
19.2
19.2
19.2
6.7
6.7
6.7
6.7
802.n
802.n
802.n
802.n
PNP
Intra-DAS
Virtual
Link
E-NNI
Link 3
E-NNI
Link 4
B-Relay
Intra-DSS
Virtual
Link
PNP
Link
MEP
19.2/3/5
PIP
6.9, 9.5b
EC NO
MIP
EC SNCP
MEP
CBP
19.2/3/5
Half-DAS
Half-DSS
19.2/3/5
19.2/3/5
@R
@S
PNP
PNP
Half-DAS
19.2/3/5
@Q
@S
S-Relay
PIP
EC NO
MEP
EC SP
MIP
EC E-NNI
MEP
@L
@L
Network Link
Intra-DSS Link
Intra-DAS Link
I-NNI
Virtual
Link b
I-NNI
Link b
These functions
support the
BVLAN
connections and
can be removed
from the view;
see next slide
21
PBB Data Plane Model I/1 (separate B- and S-VLAN fabrics)
(example with EC SNCP)
C-MAC space
EUI48: @O
MAC:
@S
@P
@S
@K
@K
@A @A @B @B
@A @W @P @B
@C @C @D @D
@C @W @P @D
S-Relay
19.2/3/5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
8.5
6.10
6.14
8.5
8.5
19.2
19.2
6.7
6.7
802.3
802.3
E-NNI
Link 2
BVLAN
MEP
Intra-DAS
BVLAN
(Virtual
Link)
19.2/3/5
6.9, 9.5b
8.5
6.10
6.14
19.2/3/5
19.2/3/5
19.2/3/5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
8.5
8.5
8.5
8.5
6.10
6.10
6.10
6.10
19.2
19.2
6.14
6.14
6.14
6.14
6.7
6.7
802.3
802.3
6.14
6.14
6.14
6.11, 9.5c
6.11, 9.5c
6.11, 9.5c
19.2/3/5
19.2/3/5
19.2/3/5
B-MAC space
@E
@E
@F
@F
I-NNI
BVLAN a
(Virtual
Link)
CBP
E-NNI
Link 1
19.2/3/5
Network
BVLAN
(Virtual
Link)
Intra-DSS BVLAN
(Virtual Link)
@G
@G
DAS & DSS in C-MAC space
c6.10: C-MAC B-MAC
c6.11: BSI Group Address  Default Backbone
Destination (DBD); DBD = {CBP, Group} Address
PIP
6.9, 9.5b
EC NO
MIP
EC SNCP
MEP
CBP
6.9, 9.5b
Half-DAS
Half-DSS
19.2/3/5
19.2/3/5
Link
MEP
EUI48:
MAC:
Half-DSS
19.2/3/5
@R
@S
6.14
6.14
6.14
6.11, 9.5c
6.11, 9.5c
6.11, 9.5c
19.2/3/5
19.2/3/5
19.2/3/5
I-NNI
BVLAN
(Virtual
Link)
@H
@H
E-NNI
Link 3
PNP
PNP
Half-DAS
19.2/3/5
@Q
@S
S-Relay
PIP
EC NO
MEP
EC SP
MIP
EC E-NNI
MEP
@L
@L
E-NNI
Link 4
BVLAN connections
represent the lower
layers
@I
@I
@J
@J
BVLAN connections replace the Ethernet Link
connections in the PB case. EC examples are very
similar to EC examples in PB case.
22
PBB Bridge Model of DAS (separate B- and S-VLAN fabrics)
(example with EC SNCP)
C-MAC space
@A
@S
@W @P
@W @P
@B
@C
@D
S-Relay
S-Relay
Half-DSS
EC NO MEP
EC SP MIP
19.2/3/5
19.2/3/5
Half-DSS
19.2/3/5
19.2/3/5
19.2/3/5
EC SNCP MEP
6.9, 9.5b
6.9, 9.5b
8.5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
Half-DAS
8.5
8.5
8.5
8.5
Half-DAS
6.10
6.10
6.10
6.10
6.10
6.10
6.14
6.14
6.14
6.14
6.14
6.14
19.2
19.2
6.7
6.7
802.3
802.3
E-NNI
Link 1
19.2/3/5
EC NO MIP
EC E-NNI MEP
Link
MEP
@S
E-NNI
Link 2
BVLAN
MEP
6.14
6.14
6.14
6.11, 9.5c
6.11, 9.5c
6.11, 9.5c
19.2/3/5
19.2/3/5
19.2/3/5
Intra-DAS
Virtual
Link
I-NNI
Virtual
Link a
Network
Virtual
Link
Intra-DSS
Virtual
Link
6.14
6.14
6.14
6.11, 9.5c
6.11, 9.5c
6.11, 9.5c
19.2/3/5
19.2/3/5
19.2/3/5
19.2
19.2
6.7
6.7
802.3
802.3
E-NNI
Link 3
E-NNI
Link 4
I-NNI
Virtual
Link b
B-MAC space
23
PBB Logical Bridge Model for DRNI and DSNCP
(example with EC SNCP)
S-Relay
19.2/3/5
S-Relay
6.9.9.5b
6.9.9.5b
8.5
8.5
6.14
19.2/3/5
6.14
19.2/3/5
6.9, 9.5b
19.2/3/5
6.9, 9.5b
8.5
6.9, 9.5b
6.9, 9.5b
8.5
6.10
8.5
8.5
6.10
6.14
6.10
6.10
6.14
6.14
6.14
6.14
6.14
6.11, 9.5c
6.14
6.11, 9.5c
19.2/3/5
Network
Virtual
Link
19.2/3/5
I-NNI
Virtual
Link a
6.14
6.11, 9.5c
6.11, 9.5c
19.2/3/5
19.2/3/5
@S
I-NNI
Virtual
Link b
@W @P
S-Relay
DSS
6.9.9.5b
6.9.9.5b
8.5
8.5
19.2/3/5
6.14
19.2/3/5
19.2/3/5
8.5
6.9.9.5b
6.9/9.5b
DAS
8.5
8.5
6.10
6.10
6.14
6.14
6.14
6.14
6.11, 9.5c
6.11, 9.5c
6.14
6.9.9.5b
19.2
19.2
19.2
19.2
6.7
6.7
6.7
6.7
802.3
802.3
802.n
802.n
E-NNI
Link 1
E-NNI
Link 2
E-NNI
Link 3
E-NNI 19.2/3/5
Link 4
I-NNI
Virtual
Link a
19.2/3/5
I-NNI
Virtual
Link b
24
PBB Data Plane Model I/2 (combined B- and S-VLAN fabrics)
(example with EC SNCP)
S-Relay
HDSS
Fabric
B-Relay
S-Relay
HDSS
HDSS
HDSS
19.2/3/5
6.9, 9.5b
6.9, 9.5b
8.5
8.5
6.10
6.10
6.10
6.10
6.14
6.14
6.14
6.14
6.14
6.14
6.14
6.14
6.11, 9.5c
6.11, 9.5c
6.11, 9.5c
6.11, 9.5c
19.2/3/5
19.2/3/5
19.2/3/5
19.2/3/5
PIP
19.2/3/5
CBP
6.9, 9.5b
6.9, 9.5b
8.5
8.5
19.2
19.2
6.7
6.7
802.n
802.n
B-VLAN Relay supports
MP BVLAN connectivity
between two or more
PNPs and one or more
CBPs
PNP
19.2/3/5
19.2/3/5
6.9, 9.5b
6.9, 9.5b
8.5
19.2/3/5
B-Relay
19.2/3/5
19.2/3/5
Data plane model 1 for
separate B- & S-VLAN fabrics
8.5
19.2/3/5
6.9, 9.5b
6.9, 9.5b
8.5
8.5
19.2
19.2
6.7
6.7
802.n
802.n
The same connectivity
within a IB-BEB with
combined B- & S-VLAN
Fabric
Two PIP/CBP function
sets should behave as
a single virtual
PIP/CBP function set…
what does this mean
for the allocation of
MAC Addresses?
Data plane model 2 for
combined B- & S-VLAN fabrics
25
PBB IB-BEB Portal with DRNI;
B-VLAN restoration in carrier network
Two data plane models (1,2) are possible, which differ in the
presence of a single or multiple switch fabrics:
1)
Separate B-VLAN switch fabric and S-VLAN switch fabric
2)
Combined B-/S-VLAN switch fabric
26
PBB Data Plane Model I/1
(example with BVLAN restoration)
S-Relay
Half-DAS
19.2/3/5
19.2/3/5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
6.9, 9.5b
8.5
8.5
8.5
6.10
19.2
19.2
6.10
6.14
Link
MEP
6.14
6.7
6.7
802.3
802.3
E-NNI
Link 2
BVLAN
MEP
19.2/3/5
6.11, 9.5c
19.2/3/5
Half-DVS
6.9, 9.5b
6.9, 9.5b
8.5
8.5
6.10
8.5
8.5
8.5
6.10
6.10
6.14
6.10
19.2
19.2
6.14
6.14
6.7
6.7
802.3
802.3
6.14
6.14
6.14
6.11, 9.5c
19.2/3/5
Network
Virtual
Link
6.14
6.11, 9.5c
19.2/3/5
6.11, 9.5c
19.2/3/5
Half-DVS
6.14
6.11, 9.5c
19.2/3/5
E-NNI
Link 3
E-NNI
Link 4
B-Relay
19.2/3/5
19.2/3/5
19.2/3/5
19.2/3/5
19.2/3/5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
8.5
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
19.2
19.2
6.7
6.7
6.7
6.7
6.7
6.7
802.n
802.n
802.n
802.n
802.n
802.n
Intra-DSS
Virtual
Link
PNP
19.2/3/5
I-NNI
Link a
19.2/3/5
6.9, 9.5b
PNP
Link
MEP
19.2/3/5
8.5
B-Relay
Intra-DAS
Virtual
Link
19.2/3/5
6.9, 9.5b
CBP
6.14
19.2/3/5
6.9, 9.5b
6.14
6.11, 9.5c
E-NNI
Link 1
19.2/3/5
EC NO
MIP
CBP
19.2/3/5
19.2/3/5
PIP
19.2/3/5
PNP
PNP
Half-DAS
PIP
EC NO
MEP
EC SP
MIP
EC E-NNI
MEP
S-Relay
Network Link
Intra-DVS Link
I-NNI
Link b
Intra-DAS Link
DVS: Distributed VLAN restoration Sublayer
27
Which C-MAC addresses will
these EC MIPs (on PIPs) have?
Which B-MAC addresses will
these PIPs have?
PBB Data Plane Model I/1
(example with BVLAN restoration)
C-MAC space
EUI48: @O
MAC:
@S
@P
@S
@K
@K
@A
@?
@B
@B
@C
@C
@D
@?
S-Relay
Half-DAS
19.2/3/5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
6.9, 9.5b
8.5
8.5
8.5
6.10
19.2
19.2
6.10
6.14
6.14
6.7
6.7
802.3
802.3
E-NNI
Link 2
BVLAN
MEP
Intra-DAS
Virtual
Link
19.2/3/5
6.11, 9.5c
19.2/3/5
Half-DVS
19.2/3/5
19.2/3/5
8.5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
8.5
6.10
8.5
8.5
8.5
6.10
6.10
6.14
6.10
19.2
19.2
6.14
6.14
6.7
6.7
802.3
802.3
6.14
6.14
6.14
6.11, 9.5c
19.2/3/5
B-MAC space
@E
@E
19.2/3/5
6.9, 9.5b
@F @F @G
@? @? @G
CBP
6.14
19.2/3/5
6.9, 9.5b
6.14
6.11, 9.5c
E-NNI
Link 1
19.2/3/5
EC NO
MIP
Network
Virtual
Link
CBP
Link
MEP
EUI48:
MAC:
19.2/3/5
PIP
19.2/3/5
19.2/3/5
@R
@S
6.14
6.11, 9.5c
19.2/3/5
PNP
PNP
Half-DAS
19.2/3/5
@Q
@S
S-Relay
PIP
EC NO
MEP
EC SP
MIP
EC E-NNI
MEP
@L
@L
6.11, 9.5c
19.2/3/5
Half-DVS
6.14
6.11, 9.5c
19.2/3/5
E-NNI
Link 3
E-NNI
Link 4
Intra-DSS
Virtual
Link
@H
@H
@I @I
@? @?
@J
@J
Which B-MAC addresses will these BVLAN MEPs (on CBPs) have?
DVS: Distributed VLAN restoration Sublayer
28
PBB-TE IB-BEB Portal with DRNI;
TESI protection in carrier network
Two data plane models (1,2) are possible, which differ in the
presence of a single or multiple switch fabrics:
1)
Separate ESP/TESI switch fabric and S-VLAN switch fabric
2)
Combined ESP/S-VLAN switch fabric
29
PBB-TE Data Plane Model I/1
(example with TESI protection)
S-Relay
Half-DAS
19.2/3/5
19.2/3/5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
6.9, 9.5b
8.5
8.5
8.5
6.10
19.2
19.2
6.10
6.14
Link
MEP
6.14
6.7
6.7
802.3
802.3
E-NNI
Link 2
TESI
MEP
19.2/3/5
6.11, 9.5c
19.2/3/5
Half-DTS
6.9, 9.5b
6.9, 9.5b
8.5
8.5
6.10
8.5
8.5
8.5
6.10
6.10
6.14
6.10
19.2
19.2
6.14
6.14
6.7
6.7
802.3
802.3
6.14
6.14
6.14
6.11, 9.5c
19.2/3/5
Network
Virtual
Link
6.14
6.11, 9.5c
19.2/3/5
6.11, 9.5c
19.2/3/5
Half-DTS
6.14
6.11, 9.5c
19.2/3/5
E-NNI
Link 3
E-NNI
Link 4
B-Relay
19.2/3/5
19.2/3/5
19.2/3/5
19.2/3/5
19.2/3/5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
8.5
8.5
8.5
8.5
8.5
19.2
19.2
19.2
19.2
19.2
19.2
6.7
6.7
6.7
6.7
6.7
6.7
802.n
802.n
802.n
802.n
802.n
802.n
Intra-DSS
Virtual
Link
PNP
19.2/3/5
I-NNI
Link a
19.2/3/5
6.9, 9.5b
PNP
Link
MEP
19.2/3/5
8.5
B-Relay
Intra-DAS
Virtual
Link
19.2/3/5
6.9, 9.5b
CBP
6.14
19.2/3/5
6.9, 9.5b
6.14
6.11, 9.5c
E-NNI
Link 1
19.2/3/5
EC NO
MIP
CBP
19.2/3/5
19.2/3/5
PIP
19.2/3/5
PNP
PNP
Half-DAS
PIP
EC NO
MEP
EC SP
MIP
EC E-NNI
MEP
S-Relay
Network Link
Intra-DTS Link
I-NNI
Link b
Intra-DAS Link
DTS: Distributed TESI protection Sublayer
30
PBB-TE Data Plane Model I/1
(example with TESI protection)
C-MAC space
EUI48: @O
MAC:
@S
@P
@S
@K
@K
@A
@?
@B
@B
@C
@C
@D
@?
S-Relay
Half-DAS
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
6.9, 9.5b
8.5
8.5
8.5
6.10
19.2
19.2
6.10
6.14
Link
MEP
6.14
6.7
6.7
802.3
802.3
E-NNI
Link 1
E-NNI
Link 2
TESI
MEP
Intra-DAS
TESI
(Virtual
Link)
EUI48:
MAC:
19.2/3/5
19.2/3/5
Half-DTS
19.2/3/5
19.2/3/5
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
6.9, 9.5b
8.5
8.5
6.10
8.5
8.5
8.5
6.10
6.10
6.14
6.10
19.2
19.2
6.14
6.14
6.7
6.7
802.3
802.3
6.14
6.11, 9.5c
19.2/3/5
ESP-MAC space
@E
@E
19.2/3/5
8.5
@F @F @G
@? @? @G
CBP
6.11, 9.5c
6.11, 9.5c
19.2/3/5
6.9, 9.5b
6.14
6.14
19.2/3/5
EC NO
MIP
PIP
19.2/3/5
19.2/3/5
Network
TESI
(Virtual
Link)
6.14
6.14
CBP
19.2/3/5
19.2/3/5
@R
@S
6.14
6.11, 9.5c
19.2/3/5
PNP
PNP
Half-DAS
19.2/3/5
@Q
@S
S-Relay
PIP
EC NO
MEP
EC SP
MIP
EC E-NNI
MEP
@L
@L
6.11, 9.5c
19.2/3/5
Half-DTS
6.14
6.11, 9.5c
19.2/3/5
E-NNI
Link 3
E-NNI
Link 4
Intra-DSS TESI
(Virtual Link)
@H
@H
@I @I
@? @?
@J
@J
Which ESP-MAC addresses will these ESP/TESI MEPs (on CBPs) have?
DTS: Distributed TESI protection Sublayer
31
OTN TB Portal with DRNI;
ODUk SNCP in carrier network
Two data plane models:
1) Separate ODUk switch fabric and Ethernet
switch fabric
2) Universal switch fabric
32
OTN TB Portal with DRNI;
EC SNCP in carrier network
Two data plane models:
1) Separate ODUk switch fabric and Ethernet
switch fabric
2) Universal switch fabric
33
MPLS-TP TB Portal with DRNI;
Transport-LSP SNCP in carrier network
Two data plane models:
1) Separate MPLS-TP switch fabric and Ethernet
switch fabric
2) Universal switch fabric
34
MPLS-TP TB Portal with DRNI;
EC SNCP in carrier network
Two data plane models:
1) Separate MPLS-TP switch fabric and Ethernet
switch fabric
2) Universal switch fabric
35