First-Order Differential Equations Part 1 First-Order Differential Equations Types: • Variable Separable • Linear Equations • Exact Equations • Solvable by Substitutions.
Download ReportTranscript First-Order Differential Equations Part 1 First-Order Differential Equations Types: • Variable Separable • Linear Equations • Exact Equations • Solvable by Substitutions.
First-Order Differential Equations Part 1 First-Order Differential Equations Types: • Variable Separable • Linear Equations • Exact Equations • Solvable by Substitutions Variable Separable • The simplest of all differential equations are those of the first order with separable variables. • A first-order differential equation of the form dy g( x)h( y ) dx is said to be separable or to have separable variables. Variable Separable • To solve variable separable first-order differential equations, proceed as follows: dy g( x)h( y ) dx dy g( x)dx h( y ) p( y )dy g( x)dx p( y )dy g( x)dx H( y ) G ( x ) c Let 1/h(y) = p(y) H(y) and G(x) are antiderivatives of p(y) and g(x), respectively. Example Solve: (1 y )dx (1 x )dy 0 2 2 Solution: (1 y 2 )dx (1 x 2 )dy 0 1 (1 y )dx (1 x )dy 0 (1 y 2 )(1 x 2 ) dy dx 2 1 y 1 x2 dy dx 2 2 1 y 1 x arctan (y ) arctan (x ) c 2 2 Alternate Solution: (1 y 2 )dx (1 x 2 )dy 0 1 (1 y )dx (1 x )dy 0 (1 y 2 )(1 x 2 ) dy dx 1 y2 1 x2 2 2 dy dx 1 x2 1 y2 arctan (y ) arctan (x) arctanc tanarctan (y ) tan arctan (x) arctanc tanarctanc tanarctan (x ) y 1 tanarctanc tanarctan (x) cx y 1 cx y cxy c x y x c(1 xy) c xy 1 xy Example Solve: 1 y dx 1 x dy 0, 2 2 Solution: 1 y dx 2 1 1 y 2 dy 1 1 y 2 1 x dy 0 2 1 1 x dy 2 1 1 y 2 1 x2 dx 0 1 1 x arcsi ny arcsi nx C 2 3 y ( 0) 2 dx Example 3 Initial Boundary Condition: y (0) 2 Solving for C: arcsiny arcsinx C 3 arcsin(0) C arcsin 2 0C 3 C 3 Example 3 Initial Boundary Condition: y (0) 2 Solving for C: arcsi ny arcsi nx C arcsi ny arcsi nx 3 Example Alternate Form of Final Answer: 1 y dx 1 x dy 0 2 2 arcsiny arcsinx 3 si n (arcsiny ) si n (arcsinx ) 3 y si n (arcsinx ) cos( ) cos(arcsinx ) si n ( ) 3 3 1 1 x2 3 y x( ) ( )( ) 2 1 2 x 3 y 1 x2 2 2 Linear Equations A first-order differential equation of the form dy a1 ( x ) a 0 ( x )y g ( x ) dx is said to be a linear equation in the dependent variable y. When g(x) = 0, the linear equation is said to be homogeneous; otherwise, it is nonhomogeneous. Linear Equations We can divide both sides of the equation by the lead coefficient a1(x): dy a1 ( x ) a 0 ( x )y g( x ) dx dy a 0 ( x ) g( x ) y dx a1 ( x ) a1 ( x ) dy P ( x )y f ( x ) dx Linear Equations Standard form of a linear 1st-order DE: dy P( x ) y f ( x ) dx This differential equation has the property that its solution is the sum of two solutions: y = yc + yp Linear Equations Now, yc is a solution of the associated homogeneous equation dy P( x )y 0 dx and yp is a particular solution of the nonhomogeneous equation: dy P( x ) y f ( x ) dx Linear Equations Proof: d y P ( x )y f ( x ) dx ? d y c y p P( x ) y c y p f ( x ) dx ? dy c dy p P ( x )y c P ( x )y p f ( x ) dx dx ? dy c dy p P ( x )y c P ( x )y p f ( x ) dx dx 0 f (x) f (x) Now, the previous homogeneous equation is also separable: dy P ( x )y 0 dx dy P( x )dx 0 y dy P( x )dx y l n y l nk P( x )dx l n (yk ) P( x )dx yk e P ( x )dx 1 P ( x )dx y e k y ce P ( x )dx Le t y c y ce P ( x ) dx y c cy1 wh e re y 1 e P ( x ) dx Now, let yp = u(x)y1: d y p P ( x )y p f ( x ) dx d u(x)y 1 P(x)u(x)y 1 f (x) dx dy 1 d u(x) P(x)u(x)y 1 f (x) u( x ) y1 dx dx d dy 1 u(x) f (x) u( x ) P( x )y 1 y 1 dx dx d u(x) f (x) u( x)0 y 1 dx d u(x) f (x) y1 dx Separating variables and integrating gives d u( x) f ( x) y1 dx f (x) du dx y 1 (x) f (x) u dx y 1 ( x) f ( x) u dx P ( x ) dx e P ( x ) dx u e f ( x )dx Now, going back to yp = uy1: y p uy1 P ( x ) dx P ( x ) dx yp e f ( x)dx e Now, going back to y = yc + yp: y yc yp y ce P ( x )dx e P ( x )dx P ( x )dx e f (x)dx Remember this special term called the “integrating factor”: e P ( x ) dx We can use the integrating factor as follows: y ce P ( x )dx e P ( x )dx e P ( x )dx f ( x)dx e P ( x )dx P ( x ) dx P ( x ) dx General ye c e f ( x)dx Solution RECALL AGAIN Standard form of a linear 1st-order DE: dy P( x ) y f ( x ) dx Left-hand side of the standard form, to be used for deriving the solution (see next slide) A Simpler Derivation This derivation hinges on the fact that the left hand side of the 1st-order differential equation (in standard form) can be recast into the form of the exact derivative of a product by multiplying both sides of the equation by a special function (x). Left side of standard form of 1st order, linear DE multiplied by . dy d y P( x ) y dx dx Derivative of a product Left-hand side of the standard form of a 1st order linear D.E. of two variables dy d d ? P( x)y y y dx dx dx A Simpler Derivation The derivation then involves solving the encircled elements as follows: d P dx d Pdx ln | | P( x )dx c1 ( x ) e P ( x )dx c1 A Simpler Derivation Continuing, we have: ( x ) e P ( x )dx c1 ( x ) c1 P ( x )dx e e ( x ) c 2 P ( x )dx e A Simpler Derivation Even though there are infinite choices of (x), all produce the same result. Hence, to simply, we let c2 = 1 and obtain the integrating factor. ( x ) c 2 P ( x )dx e ( x ) P ( x )dx (1)e ( x ) P ( x )dx e A Simpler Derivation • This is what we have derived so far. We multiply both sides of the standard form of the 1st-order equation by the integrating factor (x). • We can then integrate both sides of the resulting equation and solve for y, resulting in a one-parameter family of solutions. A Simpler Derivation dy P( x )y f ( x ) dx P ( x )dx dy P ( x )dx P ( x )dx e e P( x )y e f ( x) dx d P ( x )dx P ( x )dx ye e f ( x) dx P ( x )dx P ( x )dx d ye e f ( x )dx P ( x )dx ye y e P ( x )dx P ( x )dx e f ( x )dx c P ( x )dx P ( x )dx e f ( x )dx ce Solving a Linear, 1st-Order DE 1. Put the differential equation in standard form. 2. From the standard from, identify P(x) and then find the integrating factor P ( x ) dx e 3. Multiply the standard form equation by the integrating factor. Solving a Linear, 1st-Order DE 4. The left hand side of the resulting equation is automatically the derivative of the integrating factor and y: P ( x ) dx d P ( x )dx e y e f ( x ) dx 5. Integrate both sides of this last equation. Example Find the general solution of: (x 3y)dx xdy 0 5 Solution: Step 1: 1 ( x 3y )dx xdy 0 xdx 5 dy x 3y 0 dx x dy 3 4 yx dx x 5 Example Solution: Step 2: P(x): include the negative sign if present dy 3 4 yx dx x Integrating Factor: P ( x )dx e e 3 ( )dx x e 3 ln x x 3 Example Solution: Step 3: 3 dy x dx x x 3 Step 4: Recall: 3 3 3 4 y x x x dy 4 3x y x dx d dv du uv u v dx dx dx Example Solution: Step 3: Derivative of y x 3 Step 4: Thus: dy 4 3x y x dx Derivative of x –3 d 3 x y x dx Solution: Step 5: Example d 3 x y x dx d x 3 y xdx d x 3 y xdx 2 x x3y c' 2 2 3 x x y c' 2x 3 2 2y x 5 2c' x 3 2y x C x 5 3 Exercises Solve the following variable separable differential equations. 1. y' x exp(y x ); when x 0, y 0 2 2. (2a r )dr r sind; when 0, r a 2 2 3 3. xy3dx (y 1)e xdy 0 4. y' cos x cosy 5. dx t(1 t ) sec xdt 2 2 2 Answers: 1) y ln 2 ln(1 e x2 ) r 2) r cos a r ln a 2 3) e ( x 1) x 2 2 2y 1 2y 2 c 4) 4 ln | sec y tan y | 2x sin 2x c 5) 2x sin 2x (t 1) c 2 2 Exercises Solve the following 1st-order, linear differential equations. 1. (x 3y)dx xdy 0 2. y' cscx y cot x 3. 5 ( y x x ycot x)dx x dy 0 4. 2ydx (x 1)(dx dy) 5. (2x 3)y' y 2x 3 2 Answers: 1) 2y x cx 5 3 2) y c sin x cos x 3) x ysin x x cos x sin x c 4) ( x 1)y ( x 1)( x 2 ln | x 1 | c) 5) 2y 2x 3 ln | 2x 3 |