Gas Reservoir Compartmentalization in Lowstand ProgradingWedge Deltaic Systems: Oligocene Frio Formation, South Texas Ursula Hammes, Bureau of Economic Geology, Jackson School of Geosciences, University of Texas.

Download Report

Transcript Gas Reservoir Compartmentalization in Lowstand ProgradingWedge Deltaic Systems: Oligocene Frio Formation, South Texas Ursula Hammes, Bureau of Economic Geology, Jackson School of Geosciences, University of Texas.

Gas Reservoir
Compartmentalization in
Lowstand ProgradingWedge Deltaic Systems:
Oligocene Frio Formation,
South Texas
Ursula Hammes, Bureau of Economic Geology,
Jackson School of Geosciences, University of Texas
Contributors and Sponsors









Frank Brown (sequence stratigraphy)
Bob Loucks (sequence stratigraphy)
Ramón Treviño (geology)
Patricia Montoya (geophysics)
Randy Remington (geophysics)
STARR Project
Western Geco (seismic)
IBC Petroleum
Railroad Commission (logs, production data)
OUTLINE




Develop exploration model for Oligocene
Frio deltaic lowstand sands.
Assess exploration potential of growthfaulted basins.
Establish structural and stratigraphic
architecture.
Define reservoir compartmentalization.
DATA
3-D seismic data set.
 Well logs.
 Production and engineering analyses.

Regional Overview
Schematic NW-SE Cross Section
Sea level
Pleistocene
Anahuac
?
Pw
Pw
Pw
Pw
sf
Pw
sf
sf
On-shelf deposits
(highstand and
transgressive sands)
Off-shelf deposits
(lowstand sands)
sf
sf
sf
sf
Mobile shale ridge
Basin-floor fans
Modified from Bebout and Loucks (1981)
Frio Formation (Oligocene): Prograding wedge deltaic sediments and
slope and basin-floor fans
Study Area
Study Area and Regional Tectonics
20 Miles
30 Km
Outer Limit of
Texas State Waters
Study Area
Salt Domes
Corpus Christi
Corpus
Christi
Bay
Exploration in Growthfaulted Subbasins
Growthfaulted
subbasins
in Corpus
Christi area
1
TEXAS
2
CORPUS
CHRISTI
PORTLAND
3
3
Aransas Pass
Oso Bay
4
4
Grass
Flats
Laguna Madre
MUSTANG ISLAND
PADRE ISLAND
PORT ARANSAS
5
6
0
0
5 mi
5 km
Faults cutting Frio Fm.
are generalized
QAd2176c
Idealized Cross Section
NW
SE
6
Shingled turbidites
on clinoform toes
Incipient intraslope
subbasin no. 6
1
?
?
2
~1000 ft
~1 mi
?
?
?
Unexpanded
older deep-water systems
?
?
?
3
4
5
?
Strike Line
SW
ms twt
NE
0
500
1000
1500
2000
Prograding wedge
Slope Fan
Complex
2500
3000
Anatomy of a growth-faulted
subbasin
3rd-order sequence composed of three
mini-basins set up by growth faults
New 3rd-order sequence
Mobile shale
Mobile shale
Mobile shale
Red Fish Bay Fault Map
Seismic survey
outline
• Major growth faults (blue, green)
• Antithetic and synthetic crestal
faults (yellow)
• Orthogonal fault (red)
N
Strike Line
SW
ms twt
NE
0
500
1000
1500
2000
Prograding wedge
Slope Fan
Complex
2500
3000
Dip Line
0
0
500
500
1000
1 000
1500
1 500
2000
Crestal Faults
2 000
2500
2 500
3000
3 000
Prograding Wedge
Exploration
Depth Structure at mfs 3 (2460 ms)
(Below 34 sand)
Top Prograding
Wedge Structure
Map
ft
Contour Interval: 30 ft
Isopach map of Frio Formation showing inferred
sediment input (red arrows) and depocenters (blue
contour fill) along growth faults (yellow)
0
2
Miles
C.I. = 40 ft
pw = lowstand
prograding wedge
Section of Red Fish Bay S5-Benchmark Charts
Approximate
microfossil biozones
(benthics)
Age of
Stratal surfaces (Ma)
Depositional sequences,
systems tracts, and surfaces
2nd order
Based on local subbasin
(T/R cycles)
Composite
log
3rd order# with some
component 4th orders
SP
Log
section
selected
from well
Res.
7000
24.78 Ma
Marginulina idiomorpha,
M. vagulata, H. howei
25.2 Ma
6
3
TS
25.2 Ma
25.38 Ma
T1
Camerina sp.
Miogupsinoides
Cibicides hazzardi
26.62 Ma
HST
10A
10B
9
8
LST:ivf
4 TST
LST:ivf
2 TST
25.59 Ma
25.98 Ma
TST
T1
mfs = mcs
5E
T1
Marginulina texana
3
4
TS
7
6
8000
13
HST
4 TST
5
5D
LST:ivf
HST
TST
14 15
17
19 18
20
21
22
23
25
27
5C
LST:ivf
28
29
30
31
4 HST
Bolivina mexicana
27.33 Ma
27.49 Ma
27.51 Ma
Hackberry unconformity
5B
mfs = mcs
3\4T1
TST
Base of Shelf
2 TS
4 & 5 pw’s
AOI
3 LST:pw
32
8500
9000
9500
33
34
35
10,000
36
37
38
39
40
10,500
41
42
Nonion struma
3
4 & 5 pw’s with
thin distal 4 HST’s
and TST’s
top sf and local mcs
28.0 Ma
7500
43
11,000
44
11,500
45
28.26 Ma
4
46
12,000
4 & 5 slope
fans =3 sf system
Nodosaria blanpedi,
Discorbis “D”
&
Anomalina “F”
cocoaensis
28.5 Ma
47
Lithostratigraphic
“Frio” boundaries
are diachronous
Subbasin
floor
28.58 Ma
2 LST
13,000
top bff and local mcs
28.4 Ma
28.6 Ma
12,500
28.5 Ma
T1
3 LST:bff
Distal HST
48
13,500
Pay zones
Cross Section – Dip Line
A
A'
Well A
Well B
Well C
-100 SPnorm 20
0
GR
150
0.3
SFL
3
-100
SP
20
0.3 SFLA
3
-100 SPnorm 20
GR
0
150
-100
SP
20
0.3
SED
Well D
3
-100 SPnorm 20
GR 150
0
-100
SP
20
0.3
ILM
Well E
3
-100 SPnorm 20
-100
SP
20
0.3
ILD
Well F
-100 SPnorm 20
-100
SP
20
3
0.3
ILD
0
1 mi
0
1.5 km
3
Cross Section - Strike Line
STRIKE SECTION
B
Well A
SPnorm
-100
20
SP
-100
20
ILM
0.3 ohm.m 3
Well B
SPnorm
-100
20
SP
-100
20
SN
0.3 ohm.m 3
Well C
SPnorm
-100
20
SP
-100
20
ILM
0.3 ohm.m 3
Well D
SPnorm
-100
20
SP
-100
20
SFLU
0.3
3
ILM
0.3 ohm.m 3
Well E
SPnorm
-100
20
SP
-100
20
SFLU
0.3
3
ILM
0.3 ohm.m 3
Well F
SPnorm
-100
20
SP
-100
20
SFLA
0.3
3
ILM
0.3 ohm.m 3
Well G
SPnorm
-100
20
GR
0
150
SP
-100
20
ILM
0.3 ohm.m 3
Well H
SPnorm
-100
20
SP
-100
20
ILM
0.3 ohm.m 3
B'
Well I
SPnorm
-100
20
GR
0
150
SP
-100
20
SED
0.3 ohm.m 3
ILD
0.3 ohm.m 3
Well J
GR
0
150
ILM
0.3 ohm.m 3
Well K
SPnorm
-100
20
SP
-100
20
Well L
SED
0.3
3
ILM
0.3 ohm.m 3
0
2 mi
0
3 km
SP
-100
20
ILM
0.3 ohm.m 3
Reservoir Engineering and
Production Analysis
Production history and characteristics
 Reserve calculations
 Reservoir compartmentalization
 Volumetrics estimation
 Reservoir pressure performance

Initial Bottom-hole Pressure
Initial Bottom Hole Pressure (psi)
8,500
Lithostatic
Pressure Gradient
9,000
351_McMoran_1
342_Phoenix_1
Nov. 1978
Jul. 1970
352_McMoran_1
Jun. 1977
343_McMoran_2
Feb. 1977
9,500
342_McMoran_2
Nov. 1979
343_McMoran_1
Feb. 1971
Sand 35
344_McMoran_2
Apr. 1975
Sand 36
334_McMoran_1
Nov. 1971
345_McMoran_1
Aug. 1973
10,000
344_McMoran_2
Apr. 1975
343_McMoran_2
Mar. 1976
342_Phoenix_1
Jul. 1970
343_McMoran_1
Feb. 1971
344_McMoran_1
Sep. 1984
345_Corpus_1
Jun. 1986
10,500
344_McMoran_1
Jan. 1972
343_McMoran_3
Dec. 1980
Sand 38
Sand 39
Sand 40
Sand 42
345_Corpus_1
Dec. 1982
344_Brock_1
Apr. 1984
342_McMoran_2
Jun. 1979
11,000
Hydrostatic
Pressure Gradient
11,500
Overpressure zone
Sand 43
Sand 44
Hydrocarbon Phases by Region
North Area
N
South Area
North Area
74.4%
South Area
25.6%
Natural Gas: 47.8 BCF
North Area
5.4%
North Area
60.8%
South Area
39.2%
Condensate: 1,328 MBC
South Area
94.6%
Water: 1,055 MBC
Reservoir Drive Mechanism
Well
X – top sand
– Sand 35
Well 422_Energy_6
Strong
Ty
pi
ca
Moderate
l
Weak
Bottom Hole Pressure/Z (psi)
Bottom Hole Pressure / Z (psi)
P/Z plot for a waterdrive gas reservoir
7,000
6,000
5,000
4,000
3,000
2,000
1,000
0
Cumulative Gas Production (MMCF)
Source: Miller, 2002
0
250,000
500,000
750,000
1,000,000
Cumulative Gas Production (MMCF)
Reservoir
Compartmentalization
Reservoir Compartmentalization
Indicators
3000
100,000
(A)
(B)
Homogeneous
reservoir
2500
Homogeneous
reservoir
2000
10,000
1500
Compartmentalized
reservoir
1000
1000
Compartmentalized
reservoir
500
100
0
1
10
100
Time (days)
1000
10,000
0
1000
2000
3000
4000
Cumulative gas production (MMcf)
After Jenkin (1997)
Red Fish Bay Compartments
Zone A
Zone B
7000
7000
6000
6000
5000
5000
4000
4000
3000
3000
2000
2000
1000
1000
0
0
0
900,000
1,800,000
2,700,000
3,600,000
Cumulative gas production (Mcf)
4,500,000
0
1,800,000
3,600,000
5,400,000
7,200,000
Cumulative gas production (Mcf)
Reservoir Compartments
North Area
South Area
Production and Pressure History
Zone A
Zone B
6000
8400
2800
10,400
4500
6300
2100
7800
3000
4200
1400
5200
1500
2100
700
2600
0
Jun-70
0
Jun-72
Jun-74
Jun-76
Jun-78
Jun-80
0
0
Jun-80
Jun-84
Jun-88
Jun-92
Production Analysis
Well 1
Well 2
VSH_BEG
VSH_BEG
1 Feet 0.3
0
TVD
SP
-100
0.3
20
SN
ILD
ohm.m
0
1 Feet
3
3
SP
-100
20
TVD 0.3
3rd-order mfs
3rd-order mfs
10000
(A)
Log and systems mfs
tracts characteristics
Trap styles
(B)
9500
mfs
ILD
ohm.m
3
CONCLUSIONS

Compartmentalization of Frio reservoirs is due to interplay of
sediments and tectonics.

Compartments are related to different sandstone bodies
deposited at different times and to a common sandstone body
that has several pressure compartments defined by fault
segregation.

Sequence stratigraphic correlation established framework for
distribution of sand compartments.

Best reservoirs occurred in late lowstand to transgressive
deposits.

Fault mapping from 3-D seismic provided crucial evidence to
define compartments.