ESE534 Computer Organization Day 8: February 10, 2010 Energy, Power, Reliability Penn ESE534 Spring2010 -- DeHon.
Download ReportTranscript ESE534 Computer Organization Day 8: February 10, 2010 Energy, Power, Reliability Penn ESE534 Spring2010 -- DeHon.
ESE534 Computer Organization Day 8: February 10, 2010 Energy, Power, Reliability 1 Penn ESE534 Spring2010 -- DeHon Today • • • • • Energy Tradeoffs? Voltage limits and leakage? Variations Transients Thermodynamics meets Information Theory (brief, if we get to it) 2 Penn ESE534 Spring2010 -- DeHon At Issue • Many now argue power will be the ultimate scaling limit – (not lithography, costs, …) • Proliferation of portable and handheld devices – …battery size and life biggest issues • Cooling, energy costs may dominate cost of electronics – Even server room applications 3 Penn ESE534 Spring2010 -- DeHon Preclass 1 • 1GHz case – Voltage? – Energy per Operation? – Power required for 2 processors? • 2GHz case – Voltage? – Energy per Operation? – Power required for 1 processor? 4 Penn ESE534 Spring2010 -- DeHon Energy and Delay 1 2 E CV 2 tgd=Q/I=(CV)/I Id,sat=(mCOX/2)(W/L)(Vgs-VTH 2 ) 5 Penn ESE534 Spring2010 -- DeHon Tradeoff • EV2 tgd1/V 1 E CV 2 2 Tgd=(CV)/I Id,sat (Vgs-VTH)2 • We can trade speed for energy • E×(tgd)2 constant Martin et al. Power-Aware Computing, Kluwer 2001 http://caltechcstr.library.caltech.edu/308/ 6 Penn ESE534 Spring2010 -- DeHon Parallelism • We have Area-Time tradeoffs • Compensate slowdown with additional parallelism • …trade Area for Energy Architectural Option 7 Penn ESE534 Spring2010 -- DeHon Question • How far can this go? • What limits us? 8 Penn ESE534 Spring2010 -- DeHon Challenge: Power 9 DeHon-Workshop FPT 2009 Origin of Power Challenge • Limited capacity to remove heat – ~100W/cm2 force air – 1-10W/cm2 ambient • Transistors per chip grow at Moore’s Law rate = (1/F)2 • Energy/transistor must decrease at this rate to keep constant power density • E/tr CV2 – …but V scaling more slowly than F 10 DeHon-Workshop FPT 2009 Energy per Operation 1 2 E CV 2 Ctotal = # transistors × Ctr Ctr scales (down) as F # transistors scales as F-2 …ok if V scales as F… Penn ESE534 Spring2010 -- DeHon 11 ITRS Vdd Scaling: V Scaling more slowly than F 12 DeHon-Workshop FPT 2009 CV2 scaling from ITRS: More slowly than (1/F)2 13 DeHon-Workshop FPT 2009 Origin of Power Challenge • Transistors per chip grow at Moore’s Law rate = (1/F)2 • Energy/tr must decrease at this rate to keep constant • E/tr CV2f 14 DeHon-Workshop FPT 2009 Historical Power Scaling DeHon-Workshop FPT 2009 [Horowitz et al. / IEDM 2005] 15 Impact • Can already place more transistors on a chip than we can afford to turn on. • Power potential challenge/limiter for all future chips. 16 Penn ESE534 Spring2010 -- DeHon Impact Power Limits Integration Density Limit Constant Power Limit 45nm DeHon-Workshop FPT 2009 32nm 22nm 16nm Source: Carter/Intel 11nm 17 17 How far can we reduce voltage? 18 Penn ESE534 Spring2010 -- DeHon Limits • Ability to turn off the transistor • Noise • Parameter Variations 19 Penn ESE534 Spring2010 -- DeHon MOSFET Conduction Penn ESE534 Spring2010 -- DeHon From: http://en.wikipedia.org/wiki/File:IvsV_mosfet.png 20 Transistor Conduction • Three regions – Subthreshold (Vgs<VTH) – Linear (Vgs>VTH) and (Vds < (Vgs-VTH)) – Saturation (Vgs>VTH) and (Vds > (Vgs-VTH)) 21 Penn ESE534 Spring2010 -- DeHon Saturation Region • Saturation Region • (Vgs>VTH) • (Vds > (Vgs-VTH)) Id,sat=(mCOX/2)(W/L)(Vgs-VTH 2 ) 22 Penn ESE534 Spring2010 -- DeHon Linear Region • (Vgs>VTH) • (Vds < (Vgs-VTH)) Id,lin=(mCOX)(W/L)(Vgs-VTH)Vds-(Vds)2/2 23 Penn ESE534 Spring2010 -- DeHon Subthreshold Region • (Vgs<VTH) V IVT 10 g s VTH Isub / S S (ln(10))kT / e [Frank, IBM J. R&D v46n2/3p235] 24 DeHon-Workshop FPT 2009 Operating a Transistor • Concerned about Ion and Ioff • Ion drive current for charging – Determines speed: Tgd = CV/I • Ioff leakage current – Determines leakage power • Eleak = V×Ileak×Tcycle 25 Penn ESE534 Spring2010 -- DeHon Leakage • To avoid leakage want Ioff very small • Switch V from 0 to Vdd • Vgs in off state is 0 Vgs<VTH V IVT 10 g s VTH / S Isub VTH / S Ioff IVT 10 26 DeHon-Workshop FPT 2009 Leakage VTH / S Ioff IVT 10 • S90mV for single gate • S70mV for double gate • 4 orders of magnitude IVT/IoffVTH>280mV Leakage limits VTH in turn limits Vdd 27 DeHon-Workshop FPT 2009 How maximize Ion/Ioff ? • Maximize Ion/Ioff – for given Vdd ? EswCV2 • Get to pick VTH, Vdd Id,sat=(mCOX/2)(W/L)(Vgs-VTH 2 ) Id,lin=(mCOX)(W/L)(Vgs-VTH)Vds-(Vds)2/2 Isub V IVT 10 Penn ESE534 Spring2010 -- DeHon g s VTH / S 28 Preclass 2 • E = Esw + Eleak • Eleak = V×Ileak×Tcycle • EswCV2 Isub V IVT 10 g s VTH • Ichip-leak = Ndevices ×Itr-leak 29 Penn ESE534 Spring2010 -- DeHon / S Preclass 2 • Eleak(V) ? • Tcycle(V)? 30 Penn ESE534 Spring2010 -- DeHon In Class • Assign calculations • Collect results 31 Penn ESE534 Spring2010 -- DeHon Values V T(v) 0.36 Esw(V) Eleak(V) E(V) 3.6E-09 1.296E-09 1.296E-11 1.30896E-09 0.27 0.000000027 7.29E-10 7.29E-11 8.019E-10 0.24 5.17064E-08 5.76E-10 1.24095E-10 7.00095E-10 0.21 9.74734E-08 4.41E-10 2.04694E-10 6.45694E-10 0.205 1.08137E-07 4.2025E-10 2.21682E-10 6.41932E-10 4E-10 2.39794E-10 6.39794E-10 1.4711E-07 3.61E-10 2.79509E-10 6.40509E-10 0.18 0.00000018 3.24E-10 3.24E-10 6.48E-10 0.15 3.23165E-07 2.25E-10 4.84748E-10 7.09748E-10 0.12 5.56991E-07 1.44E-10 6.68389E-10 8.12389E-10 8.1E-11 8.1E-10 8.91E-10 0.2 1.19897E-07 0.19 0.09 0.0000009 32 Penn ESE534 Spring2010 -- DeHon Graph for In Class 33 Penn ESE534 Spring2010 -- DeHon Impact • Subthreshold slope prevents us from scaling voltage down arbitrarily. • Induces a minimum operating energy. 34 Penn ESE534 Spring2010 -- DeHon Challenge: Variation (This section was a little rushed) 35 DeHon-Workshop FPT 2009 Statistical Dopant Count and Placement 36 Penn ESE535 Spring 2009 -- DeHon [Bernstein et al, IBM JRD 2006] Vth Variability @ 65nm 37 Penn ESE535 Spring 2009 -- DeHon [Bernstein et al, IBM JRD 2006] Variation • Fewer dopants, atoms increasing Variation • How do we deal with variation? % variation in VTH (From ITRS prediction) 38 DeHon-Workshop FPT 2009 38 Impact of Variation? • Higher VTH? – Not drive as strongly – Id,sat (Vgs-VTH)2 • Lower VTH? – Not turn off as well leaks more VTH / S Ioff IVT 10 Penn ESE534 Spring2010 -- DeHon 39 Variation • Margin for expected variation • Must assume VTH can be any value in range Ion,min=Ion(Vth,max) Probability Distribution Id,sat (Vgs-VTH)2 VTH 40 Penn ESE535 Spring 2009 -- DeHon Margining Probability Distribution • Must raise Vdd to accommodate worstcase value Ion,min=Ion(Vth,max) • increase energy Id,sat (Vgs-VTH)2 VTH 41 Penn ESE535 Spring 2009 -- DeHon Variation • Increasing variation forces higher voltages – On top of our leakage limits 42 DeHon-Workshop FPT 2009 42 • Margins growing due to increasing variation Probability Distribution Variations Old New Delay • Margined value may be worse than older technology? 43 DeHon-Workshop FPT 2009 End of Energy Scaling? Black nominal Grey with variation [Bol et al., IEEE TR VLSI Sys 17(10):1508—1519]44 DeHon-Workshop FPT 2009 Chips Growing • Larger chips sample further out on distribution curve From: http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg 45 Penn ESE534 Spring2010 -- DeHon Lecture Ended Here (Didn’t really cover material in transient and thermodynamics sections) 46 Penn ESE534 Spring2010 -- DeHon Challenge Transients 47 Penn ESE534 Spring2010 -- DeHon Transient Sources • Effects – Thermal noise – Timing – Ionizing particles a particle 105 to 106 electrons • Calculated gates with 15--30 electrons last time – Even if CMOS restores, takes time 48 Penn ESE534 Spring2010 -- DeHon Voltage and Error Rate 49 Penn ESE534 Spring2010 -- DeHon [Austin et al.--IEEE Computer, March 2004] Errors versus Frequency 4.0 1.0E+02 VCC & Temperature FCLK Guardband 1.0E-01 3.0 1.0E-04 2.0 Conventional Design Max TP 1.0 0.0 2100 2400 2700 Resilient Design Max TP 1.0E-07 1.0E-10 3000 3300 1.0E-13 3600 Clock Frequency (MHz) Penn ESE534 Spring2010 -- DeHon [Bowman, ISSCC 2008] 50 Error Rate (%) Throughput (BIPS) 5.0 SEU/bit Norm to 130nm Scaling and Error Rates Increasing Error Rates 10 2X bit/latch count increase per generation logic cache arrays 1 180 DeHon-Workshop FPT 2009 130 90 65 45 32 Technology (nm) Source: Carter/Intel 51 51 Power and Reliability • Intersection is the challenge • Push Vdd in opposite directions • Both reach inflection points – From doesn’t matter – To major concern 52 DeHon-Workshop FPT 2009 Thermodynamics 53 Penn ESE534 Spring2010 -- DeHon Lower Bound? • Reducing entropy costs energy • Single bit gate output – Set from previous value to 0 or 1 – Reduce state space by factor of 2 – Entropy: S= k×ln(before/after)=k×ln2 – Energy=T S=kT×ln(2) • Naively: setting a bit costs at least kT×ln(2) 54 Penn ESE534 Spring2010 -- DeHon Numbers (ITRS 2005) • kT×ln(2) = 2.87×10-21J (at R.T. K=300) W/L=3 W=21nm=0.021mm Table 41d Penn ESE534 Spring2010 -- DeHon C8×10-18F 10-17F Eop=CV2=2.5×10-18F 55 Recycling… • Thermodynamics only says we have to dissipate energy if we discard information • Can we compute without discarding information? • Will that help us? 56 Penn ESE534 Spring2010 -- DeHon Three Reversible Primitives 57 Penn ESE534 Spring2010 -- DeHon Universal Primitives • These primitives – Are universal – Are all reversible • If keep all the intermediates they produce – Discard no information – Can run computation in reverse 58 Penn ESE534 Spring2010 -- DeHon Thermodynamics • In theory, at least, thermodynamics does not demand that we dissipate any energy (power) in order to compute. 59 Penn ESE534 Spring2010 -- DeHon Admin • Assignment grades, feedback on blackboard for HW1 and HW2 • Class Wed. • No class next Monday (2/22) 60 Penn ESE534 Spring2010 -- DeHon Big Ideas • Can trade time for energy – …area for energy • Noise and leakage limit voltage scaling • Power major limiter going forward – Can put more transistors on a chip than can switch • Continued scaling demands – Deal with noisier components • High variation and high transient upsets • Thermodynamically admissible to compute without dissipating energy 61 Penn ESE534 Spring2010 -- DeHon