Variability of Formant Measurements – Part 2 Philip Harrison J P French Associates & Department of Language & Linguistic Science, York University IAFPA 2006 Annual Conference Göteborg,
Download ReportTranscript Variability of Formant Measurements – Part 2 Philip Harrison J P French Associates & Department of Language & Linguistic Science, York University IAFPA 2006 Annual Conference Göteborg,
Variability of Formant Measurements – Part 2 Philip Harrison J P French Associates & Department of Language & Linguistic Science, York University IAFPA 2006 Annual Conference Göteborg, Sweden Summary • Briefly recap previous analysis & last year’s presentation • New analysis & results • PhD research • Questions l 2 Study • Aim: Investigate the variability of formant measurements which exists both within and between different software programs currently used in the field of forensic phonetics. – 3 programs – Praat, Multispeech & Wavesurfer – 3 analysis parameters – LPC order, analysis (frame/window) width, pre-emphasis – Word list – 5 vowel categories – 6 tokens per category – read 3 times – total = 90 tokens – 2 speakers – Peter French & me l – 2 simultaneous recordings – microphone & telephone 3 Results & Analysis • Scripts used to obtain 37,260 individual formant measurements using LPC formant trackers • Analysis – microphone data only – Initial observations of raw formant data – Quantitative analysis of results – Statistical analysis l 4 My F1s from Praat LPC Variation 3500 FLEECE TRAP PALM GOOSE SCHWA 3000 F1 Frequency (Hz) 2500 6 8 10 12 14 16 18 2000 1500 1000 500 88 85 82 79 76 73 70 67 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4 1 0 Token l 5 The Plot Shows… • Scripts work – (used in fault finding) • Vowel categories clear • Greatest deviation – LPC orders 6 & 8 • Orders 10 to 18 very similar for FLEECE, GOOSE & SCHWA • Generated many more plots for all formants, parameters & software – Lots of variation l – Difficult to interpret 6 Quantitative Analysis • Quantitative Difference Analysis – No absolute measurement to compare formants with – outcome of analysis, not directly comparable with acoustic reality – Difference calculated between value obtained with default analysis settings – Absolute difference calculated for each formant then averaged by vowel category – Shows variation between two analyses l 7 Observations • Numerical analysis confirmed impression from plots • Clear differences between vowel categories, speakers, formants, software & settings • Complex set of results with no clear patterns l 8 Statistical Analysis • Paired t-test between measurements from default settings and varied settings for each vowel category – Null hypothesis – altering analysis settings no effect – Exp hypothesis – altering analysis settings effect • Number of significant ‘hits’ summed – max 15 • Higher number = greater variation in formant measurements l • 2 significance levels – 0.01 & 0.05 9 Conclusions • Hoped to have clear patterns, able to produce set of guidelines/recommendations • Patterns only at specific, detailed level • Very clear that many factors affect formant measurements • No software is obviously better than others l • Care should be taken when measuring formants 10 New Work!!! • Initial data contained obviously incorrect measurements • Discard measurements – criterion? • Determine acceptable band – Spectrograms – no – Formant bandwidths – no (attempted) – LPC tracker & spectrogram – no (attempted) – Spectrum of selection – yes but still encountered problems l • Band limit 300 Hz – impressionistic 11 Spectrum Measurements • Used to determine centre of 300 Hz acceptable band • Spectrum with 260 Hz bandwidth – same as default spectrogram • Measured peaks F1, F2 & F3 • Issues/problems – Windowed -> biased to centre of selection – Formant peaks not always clear – some tokens ignored l – Double peaks – highest peak measured 12 Analysis of Accepted Measurements • Analyse LPC variation only – other parameters more stable – not altered • No accurate reference which raw measurements can be judged against • Accepted results provide indication of accuracy & consistency • Clear patterns in accepted formants • Condense results – % accepted per vowel category l 13 Plot of Accepted Results Praat Me Mic F1 100 90 Percentage Accepted 80 70 FLEECE TRAP PALM GOOSE SCHWA 60 50 40 30 20 10 l 0 6 8 10 12 LPC 14 16 18 14 Me Microphone Accepted Praat Multispeech F1 W avesur f er M e M i c F1 10 0 10 0 10 0 90 90 90 80 80 80 70 70 70 60 60 60 50 50 50 40 40 40 30 30 30 20 20 20 10 10 P r aat M e M i c F2 0 6 F2 Wavesurfer M ul t i speech M e M i c F1 P r a a t M e M i c F1 8 10 12 10 M ul t i speech M e M i c F2 0 14 16 18 6 8 10 12 16 18 10 0 10 0 10 0 90 90 90 80 80 80 70 70 70 60 60 60 50 50 50 40 40 40 30 30 30 20 20 20 10 10 0 6 8 10 12 14 16 18 10 0 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 11 12 10 11 12 13 14 15 16 17 18 16 17 18 17 18 0 6 10 0 10 10 0 P r aat M e M i c F3 W avesur f er M e M i c F2 0 14 8 M ul t i speech M e M i c F3 10 12 14 16 18 W avesur f er M e M i c F3 13 14 15 12 0 10 0 F3 l 80 60 40 20 6 8 10 12 14 16 18 15 0 6 8 10 12 14 16 18 10 11 12 13 14 15 16 Me Telephone Accepted Praat Multispeech P r aat M e P hone F1 F1 10 0 10 0 90 90 90 80 80 80 70 70 70 60 60 60 50 50 50 40 40 40 30 30 30 20 20 20 10 10 P r aat M e P hone F2 6 8 10 12 14 16 18 6 8 10 12 16 18 10 0 10 0 90 90 90 80 80 80 70 70 70 60 60 60 50 50 50 40 40 40 30 30 30 20 20 20 10 10 8 10 12 14 16 18 8 10 12 14 16 18 10 0 10 0 90 90 90 80 80 80 70 70 70 60 60 60 50 50 50 40 40 40 30 30 30 20 20 20 10 10 10 0 0 0 8 10 12 14 16 18 11 12 10 11 12 13 14 15 16 17 18 16 17 18 17 18 0 6 M ul t i speech M e P hone F3 10 0 6 10 10 0 P r aat M e P hone F3 W avesur f er M e P hone F2 0 14 10 0 6 l 10 M ul t i speech M e P hone F2 0 0 F3 W avesur f er M e P hone F1 10 0 0 F2 Wavesurfer M ul t i speech M e P hone F1 6 8 10 12 14 16 18 W avesur f er M e P hone F3 13 14 15 16 10 11 12 13 14 15 16 JPF Microphone Accepted Praat Multispeech P r aat JP F M i c F1 F1 10 0 10 0 90 90 90 80 80 80 70 70 70 60 60 60 50 50 50 40 40 40 30 30 30 20 20 20 10 10 P r aat JP F M i c F2 6 8 10 12 14 16 18 6 8 10 12 16 18 10 0 10 0 90 90 90 80 80 80 70 70 70 60 60 60 50 50 50 40 40 40 30 30 30 20 20 20 10 10 8 10 12 14 16 18 8 10 12 14 16 18 10 0 10 0 90 90 90 80 80 80 70 70 70 60 60 60 50 50 50 40 40 40 30 30 30 20 20 20 10 10 10 0 0 0 8 10 12 14 16 18 11 12 10 11 12 13 14 15 16 17 18 16 17 18 17 18 0 6 M ul t i speech 10 0 6 10 10 0 P r aat JP F M i c F3 W avesur f er JP F M i c F2 0 14 10 0 6 l 10 M ul t i speech JP F M i c F2 0 0 F3 W avesur f er JP F M i c F1 10 0 0 F2 Wavesurfer M ul t i speech JP F M i c F1 6 8 10 12 14 16 18 W avesur f er JP F M i c F3 13 14 15 17 10 11 12 13 14 15 16 JPF Telephone Accepted Praat Multispeech P r aat JP F P hone F1 F1 10 0 10 0 90 90 90 80 80 80 70 70 70 60 60 60 50 50 50 40 40 40 30 30 30 20 20 20 10 10 P r aat JP F P hone F2 6 8 10 12 14 16 18 6 8 10 12 14 18 10 0 10 0 90 90 90 80 80 80 70 70 70 60 60 60 50 50 50 40 40 40 30 30 30 20 20 20 10 10 8 10 12 14 16 18 8 10 12 14 16 18 10 0 10 0 90 90 90 80 80 80 70 70 70 60 60 60 50 50 50 40 40 40 30 30 30 20 20 20 10 10 10 0 0 0 8 10 12 14 16 18 11 12 10 11 12 13 14 15 16 17 18 16 17 18 17 18 0 6 M ul t i speech JP F P hone F3 10 0 6 10 10 0 P r aat JP F P hone F3 W avesur f er JP F P hone F2 0 16 10 0 6 l 10 M ul t i speech JP F P hone F2 0 0 F3 W avesur f er JP F P hone F1 10 0 0 F2 Wavesurfer M ul t i speech JP F P hone F1 6 8 10 12 14 16 18 W avesur f er JP F P hone F3 13 14 15 18 10 11 12 13 14 15 16 General Patterns • Praat & Multispeech – bell curves – Most consistent setting – P 10, MS 10 to 14 – Curves shifted to left (lower LPC) for phone • Wavesurfer – horizontal – Different behaviour to Praat & Multispeech – Some very weak results – especially F3 – For me better results for phone recording (also true for Praat & Multispeech) • Most consistent setting Praat LPC 10 l • Again variation across vowel category, speaker, formant, software & condition 19 Microphone vs Telephone • Künzel (2001): – Landline phone vs microphone – Largest F1 difference in region of 14% for close vowels • Byrne & Foulkes (2004): – GSM mobile phone vs microphone – F1 average 29% higher for GSM • Not big differences for F2 & F3 l • Current data (spectral comparisons) – only 2 speakers 20 Comparison Tables Me FLEECE TRAP PALM GOOSE SCHWA F1 258 771 690 260 502 F1 % Diff 26 0 6 33 0 F2 2171 1394 1125 1748 1486 F2 % Diff 0 1 -1 0 1 F3 2891 2632 2626 2242 2513 F3 % Diff 0 -1 -2 0 -1 F2 % Diff 0 -1 -1 -1 0 F3 2551 2306 2439 2222 2274 F3 % Diff 0 0 0 0 0 JPF l FLEECE TRAP PALM GOOSE SCHWA F1 254 661 607 269 528 F1 % Diff 13 2 6 11 1 F2 2140 1413 1037 1105 1330 21 General Observations • LPC tracks for phone recordings more stable, easier to measure – Less ‘information’ above F3 – Possibly pre-filter recordings? • Different LPC orders produce better tracks for different formants of the same token – Contradicts my previous advice to keep LPC setting constant across vowel categories l 22 PhD Next Steps • Use synthesised speech • Formant values specified • Repeat software experiments • Other factors to investigate – Pitch – Voice quality – Interaction of analysis parameters l 23 Other Potential Areas of Investigation for PhD • Effects of GSM coding & transmission • Acoustic environments • Pseudo-formants – source??? • Mouth/telephone distance & orientation l • Any other ideas…? 24 Questions ? l Thanks to Peter French & Paul Foulkes 25