Index Structures for Multimedia Data Feature-based Approach Jaruloj Chongstitvatana 2301474 Advanced Data Structures Multimedia Data Feature-based approach Image/Voice data Sequence data Geometric data Text descriptor Jaruloj Chongstitvatana Examples Movies,
Download ReportTranscript Index Structures for Multimedia Data Feature-based Approach Jaruloj Chongstitvatana 2301474 Advanced Data Structures Multimedia Data Feature-based approach Image/Voice data Sequence data Geometric data Text descriptor Jaruloj Chongstitvatana Examples Movies,
Index Structures for Multimedia Data Feature-based Approach Jaruloj Chongstitvatana 2301474 Advanced Data Structures 1 Multimedia Data Feature-based approach Image/Voice data Sequence data Geometric data Text descriptor Jaruloj Chongstitvatana Examples Movies, music Gene sequence Shape (CAD) Documents 2301474 Advanced Data Structures 2 Queries for Multimedia Data Point queries Given Range queries Given a data, find the exact match a data, find similar data within a range Nearest-neighbor queries Given Jaruloj Chongstitvatana a data, find the most similar data 2301474 Advanced Data Structures 3 Feature Transformation Mapping from an object to a d-dimensional vector, called a feature vector. What is this mapping function? For image data: color histogram, etc. For sequence data: number of each element For geometric data: slope of segments of perimeter For text descriptor: number of each keyword Jaruloj Chongstitvatana 2301474 Advanced Data Structures 4 Similarity Measure: distance function Given 2 data objects x and y. Let (x,y) be the distance function. (x,y) indicates the similarity between data x and y. Usually (x,y) is based on a distance between the feature vectors of x and y. Jaruloj Chongstitvatana 2301474 Advanced Data Structures 5 Similarity Queries Point queries Given an object x, find any object y such that (x,y)=0. Range queries an object x and a threshold , find any object y such that (x,y) < . Given Nearest-neighbor queries Given an object x, find an object y such that (x,y) ≤ (x,z) for any object z in the database. Jaruloj Chongstitvatana 2301474 Advanced Data Structures 6 Distance Measure Euclidean distance (x,y) = (i=1,…,d (xi-yi)2 )1/2 Manhattan distance (x,y) = i=1,…,d |xi-yi| Maximum distance (x,y) = max i=1,…,d |xi-yi| Weighted Euclidean (x,y) = (i=1,…,d wi (xi-yi)2 )1/2 distance Ellipsoid distance Jaruloj Chongstitvatana (x,y) = (x-y)T W (x-y) 2301474 Advanced Data Structures 7 Other Similarity Queries k-Nearest-neighbor queries Given an object x and an integer k, find k objects y1, y2,…, yk, such that, for i=1, 2, …, k, (x,yi) ≤ (x,z) for any other object z in the database. Approximate nearest-neighbor queries Approximate k-nearest-neighbor queries Jaruloj Chongstitvatana 2301474 Advanced Data Structures 8 Range Queries On k-d-B trees Grid files Quad trees R-trees Already discussed. Jaruloj Chongstitvatana 2301474 Advanced Data Structures 9 Nearest-neighbor Queries On k-d-B trees Grid files Quad trees R-trees Let’s discuss. Jaruloj Chongstitvatana 2301474 Advanced Data Structures 10