Modern (Future) power systems
Download
Report
Transcript Modern (Future) power systems
Simulation and modeling of smarter
large power grids
Omar Saad,
Researcher
IREQ/Hydro-Québec
ADVANCED
ENERGY 2012
30-31 Octobre 2012, New York, NY, USA
Modern (Future) power systems
> Increasingly complex transmission and
distribution systems
> Evolution and upgrading of existing systems
allowing to increase the penetration of renewable
energies and to elevate security and flexibility
levels
> Delivery of greener power
> Large scale integration of renewable generation
> Central and distributed generators, microgrids
> Proliferation of HVDC systems
> Smart Grids
•
2
Huge needs in information and data for the operation
and planning of power systems
Groupe – Technologie
Large scale integration of renewable
generation
> Deployment of intelligent controls,
computer applications and
communications
> Smart technologies for the
interconnection of renewable energy
generators in wide geographic areas
> Management of distributed resources
> Power electronics application for:
control and variability
> Sophistication of analysis methods
3
Groupe – Technologie
Trends and challenges
> Simulation and analysis of super large networks with
wideband models
•
Electromagnetic and electromechanical transients
> Simulation of super distribution grids (Smart network)
> Challenges
•
•
•
•
•
•
•
4
Data and data portability between power system applications
Visualization and analysis of huge systems
Parallel computations
Real-time computations
Online analysis
Unification of simulation methods and environments
Multi-domain simulations
Groupe – Technologie
LF
U1pu
I1
+
2
-
1M
+
U1pu
I1
CP
L7053
L7052
CP
CP
L7051
+
230.1
LF
+
+
CXC53
CXC51
CXC52
+
+
+ ZnO
+ ZnO
+
+ ZnO
CP +
L3039
CP
L7032
CP
L7031
CP
L7033
+
+
219.9
+
CXC31
1M
+ ZnO
+
CXC32
CXC33
+
+
+ ZnO
+ ZnO
+
U1pu
I1
-
CXC29
CXC28
CXC27
+
+
+ ZnO
+
+ ZnO
-exst1
-pss1a
AVR
(pu)
SM
LF
manic2_T1aT4
+
?m
CP
L7029
+ [R,L]
1
2
SM
1
2
?m
AVR
(pu)
+
CXC23
CXC8
+
+ ZnO
+
+
P=0
Q=0
117.2
L7026
+ ZnO
+ ZnO
2006-ajout de 19 ohms-total 44 ohms, 2300A
CXC7
CP
+
CP
L3001_L3002_L3003_L3004
Bergeronnes
+
187.2
+
U1pu
I1
+
L3020_L3012_L3011
L7004_B
CP
saguenay_b718
165 MX
LF
+
+
CP
U1pu
I1
-
L7023_B
CP
CP
riviereduloup_b472
+
charlevoixB
2
+
3
U1pu
I1
1
L7018
CP
+
CP
+
CP
97600uS
2
+
3
1
26.9
L7016
CXC1_2_3_4
139.020
1698MW
0
LF
+ CP
34.8
+ [R,L]
L3104
34.8
+
+
L7020
+ [R,L]
+ CP
+
+
L3078_3079_3080_3071_A
U1pu
I1
+
314.24/_8.7
-
182.20
L7010
1M
laurentides_b304
1M
+
+
L7024
+
+
183.1
CP
251.9
L7025
CP
44.7
-
LF
laurentidesCLC
+ CP
749.82/_14.5
+
I
+
laurentides_b704
I
laverendrye_CLC
L7008_B
330 MX
242
U1pu
I1
L7007_B
-
+
V
+
charlevoixB
Phase:14
LF
laurentidesCLC
752.87/_20.7
451MW
87MVAR
+
laverendrye_b714
CP
-exst1
-pss1a
+
CP
L7023_A
CP
CP
137.8
L7008_A
+
+
+
L7007_A
CXC04
+ ZnO
CP
saguenay_L7026
+
330 MX
L7045
SM
2
outardes3_T31aT34
LF
LF
357MW
10.5MVAR
outardes2_A1aA3
?m
SM
-exst1
-pss4b
87.6
-
759.34/_30.0
CP
L7044
+ [R,L]
L3026
L3029_L3030
+
CP
+
42.58
-exst1
-pss4b
+
-
AVR
(pu)
charlevoixA
+
CXC19
LF
943MW
420MVAR
-
+ ZnO
U1pu
I1
+
Périgny
3
660 MX
3600Ohm
CP
3
+
?m
AVR
(pu)
outardes3_A1aA4
ks=1
U1pu
I1
+
LF
hauterive_b1643
LF
CP
36
+ [R,L]
-
+
U1pu
I1
manicouagan_b305
LF
LF
SM
?m
1
chamouchouane_CLC
253.670
hauterive_b643
L3013_L3014
[R,L] +
?m
CP
224.2
L7004_A
+
L3021_L3022_L3023_L3024
CP
+
+
U1pu
I1
U1pu
I1
2
1
manicouagan_T1aT4
-ieeex1
(pu)
AVR
2
SM
+
CP
251.6
L7019
+
-
chibougamau_b1683
LF
bersimis2_A1aA5
(pu)
AVR
-exst1
-pss1a
bersimis1_A1aA8
LF
CXC76
CXC77
+ ZnO
+
+ ZnO
+
I1
U1pu
1M
CP2
CXC84
CXC85
495 MX
192.3
+
L7084_7085
91MW
3MVAR
CXC92
CXC93
1
3
+
+
+ ZnO
+
U1pu
I1
+ ZnO
L7086
CP
195
+
CXC86
+
in
Vct
-exst1
-ieeevc (s.o.)
-pss4b
AVR out
(pu)
+ ZnO
1M
2
U1pu
I1
+
1
L3009
+
+
750.03/_34.2
LF
4MW
0.54MVAR
CXC78
+
U1pu
I1
-
-
+
+
manicouagan_b705
1
+
U1pu
I1
+
315.42/_33.7
317.28/_33.0
I
-
CP
60.2
2
bersimis2_b434
2
-
+
L1
L7011
2
bersimis1_b433
751.51/_26.2
+ ZnO
L7028
251.4
+
181.6
+
CXC94
chibougamauCLC
chamouchouane_b731
+ ZnO
CP
2
1
171.2
3
1
V
752.38/_41.1
L7027
+
2
+
+ ZnO
abitibi_T61T62
U1pu
I1
+
?m
LF
abitibi_CS1CS2
SM
AVR
(pu)
abitibi_CS1CS2
-exst1
-pss4b
270.6
CP2
L7092_7093
L7094
-exst1
-pss1a
T w=0.03s au lieu de 0.08s
-
2
1
+
3
CP
I
+
286.6
+ ZnO
+
SM
L3010
+
+ ZnO
1320 MX
AVR
(pu)
?m
LF
chibougamau_T2T3
LF
+
421MW
LF 39MVAR
hartjaune
+
LF
2
1
CP
55
manic3_A1aA6
LF
V
2
+
laverendrye_L7094
CP +
L1695
2
1
2
1
107.7
CP
L3031_L3032
L3033_L3034
CP
2005
+
U1pu
I1
1
3
LF
-
3
1
+
+
+ [R,L]
chibougamauCLC
-
759.06/_36.0
arnaud_b1609
I1
U1pu
+
1M
2
arnaud_b709
1
CP2
235.3
+
L7076_7077
L7078
CP
L7080
CP
CXC81
CXC80
+
+ ZnO
+
+ ZnO
+
+
241.1
CP
L7081
L7082
CP
217.8
+
CXC82
+
+ ZnO
+
U1pu
I1
•
chibougamau_b783
KG=0
2
+
1M
L3035_L3036
?m
SM
U1pu
I1
3
+
+
2
chamouchouaneCLC
+
1
+
CP
61.8
LF
arnaud_b309
+
-exst1
-pss4b
+
990 MX
L7090
1
660 MX
V
CP
70.46
AVR
(pu)
micoua_b706
+
CP
L3115_L3116
KG=1
SM
748.42/_37.7
abitibi_T1aT3
CP
2
outardes4_A1aA4
AVR
(pu)
-exst1
-pss1a
1
L3151
+
1
LF
3
+
+
+
U1pu
I1
2
?m
2005
micoua_b306
754.73/_34.4
-
1
LF
toulnustouc_A1A2
toulnustouc_b476
+
abitibi_b713
L3150
lebel_b528
stemarguerite3_T1T2
2
-exst1
-pss1a
manic5_b41
LF
manic2_A21aA28
I
748.11/_49.6
?m
LF
?m
SM
1
V
albanel_CLC
SM
L7079
LF
590MW
48MVAR
2
1
765/315/12.5
+
U1pu
I1
+
31.7
+ [R,L]
montagnais_b710
990 MX
SM
LF
AVR
(pu)
?m
LF
3
1
+ [R,L]
CP
330 MX
2
manic5_A1aA8
manic5PA_A1aA4
AVR
(pu)
L3027_L3028
660 MX
U1pu
I1
I
2
1
-exst1
-pss2a
L3123
+
-
+
-
LF
2
+
albanelCLC
758.77/_45.7
nemiscauCLCLF
1
?m
760.56/_46.3
nemiscau_b780
+
LF
albanel_b782
1
stemarguerite3_A1A2
AVR
(pu)
1
CXC70
CXC69
+
+
+ ZnO
+ ZnO
CXC59
+
+ ZnO
1M
3
1
1100 lines
296 3-ph transformers
532 loads
7 SVC
32 Synchronous
Condenser
99 SM
-exst1
-pss1a
738.42/_57.9
1
2
CP2
217.7
+
a
b
c
c
a
b
+
CP
5.90000E+01
CXC61
+
+ ZnO
+
+ ZnO
+
+
2006
churchill_b760
Réglage Planificateur
+
CXC62
a
b
c
CXC63
L3176_3177
+
+
a
b
c
+
262.3
1m
2
V
SM
lagrande4_A1aA9
-
+
U1pu
I1
735/13.8
273.6
L7069_7070
CP
1
+
2
1
+
+ ZnO
+
AVR
(pu)
-expci1
-pss1a
LF
?m
SM
eastman_A1aA3
L7061
CP
2
261.0
L7062
L7063
CP
+
1M
315/13.8
LF
3
expci1 partiel
+
+
LF
1
hartjaune
-exst1
-pss1a
AVR
(pu)
L7059
L7088
+ [R,L]
[R,L] +
L3162_L3163
L7089
+ [R,L]
U1pu
I1
CP
+
2162MW
0
330 MX
1
3
2
+
330 MX
radissonslack
-1/1E15/0
CP
+
+
-2000 MW du RNCC
+
-
-
735/13.8
1
2
+
CP
L7055
+
L7057
CP
104.3
2
330 MX
-expci1
-pss2a
expci1 partiel
laforge2_A1A2
•
•
•
•
•
CP
120.6
+
+
radisson_b720
radisson_b320
+
lemoyne_b723
767.32/_58.5
CP
155.3
AVR
(pu)
SM
LF
768.86/_63.5
tilly_L7055
763.82/_60.1
L7060
755.52/_60.3
Planificateur
2
U1pu
I1
LF
+
-exst1
-pss1a
AVR
(pu)
SM
?m
lagrande3_A1aA12
LF
+
LF
0
U1pu
I1
-
+
U1pu
I1
-
lagrande3_A1aA12
lagrande3_A1aA12
-exst1
-pss1a
AVR
(pu)
SM
?m
lagrande2_A1aA16
LF
AVR
(pu)
SM
LF
?m
+
U1pu
I1
AVR
(pu)
-expci1
-pss2a
expci1 partiel
+
?m
SM
LF
lagrande1_A1aA12
U1pu
I1
-exst1
-pss1a
1
+
L3152_L3153
2
lagrande2_b749
-exst1
-pss1a
1
tilly_b724
L7054
CP
?m
AVR
(pu)
SM
+
735/13.8
+
54.9
laforge2_A1A2
2
+
1
radisson_b1020
CP
326.63/_86.5
107.07
?m
3
+
2
2
1
LF
brisay_A1A2
L3168_L3169
CP
+
+
83.4
+
2
1
+
3 gr
+
CP
1M
L7056
330 MX
1
L1498
-expci1
-pss2a
expci1 partiel
L3166_L3167
165 MX
2
+ [R,L]
LF
AVR
(pu)
SM
322.03/_79.2
L3172_L3173
+
lagrande1_T21T27
17MW
3MVAR
?m
?m
LF
laforge1_A11aA16
L3170_L3171
[R,L] +
Réglage Planificateur
SM
churchill_A1aA11
AVR
(pu)
-exst1
-pss1a
Simulation of very large systems:
Hydro-Québec Network in EMTP-RV
levis_b703
jacquescartier_b717
752.80/_13.5
CP
748.78/_14.7
246.5
+
grandbrule_b770
330 MX
L7017
CP
+
P=0
Q=0
228.8
+
740.09/_6.4
2006
LF
levis_CLC
L7002
Phase:14
1M
+
+
CP
L7035
L7005
U1pu
I1
CP
LF
U1pu
I1
-
-
2
?m
SM
+
LF
levis_CS1CS2
levis_b2003
76.0
+
AVR
(pu)
34
CP
+ [R,L]
-exst1
-pss4b
+
I1
U1pu
+
1M
L2385_A
+
LF
-
51.90
CP
PI
in
2
1M
L7009
+
Vct
L7014
duvernay_T2T3T5
2
+
1
3
1
AVR out
(pu)
3
733.88/_0.3
PI
165 MX
+
2
3
165 MX
bouchervilleslack
+
boucherville_b701
+
3
1
3
1
2
735/230/12.5
+
+
1M
+
1M
CP
+ [R,L]
+ [R,L]
Show Load-Flow
Sim ulation web
Start EMTP
OFF
+
View Steady-State
+
132.8
Load-Flow
thetford_b2290
-
B2290_capac
Sim ulation
Options
+
CP
L7096
+
CP
L2329
102.0
+
I1
U1pu
U1pu
I1
-
CP
108
L7006
L7095
L7034
LF
PI
L2375
2006
2006
+
L7036
+
+
+
2
3
nicolet_b2007
+
1M
+
1M
2
3
appalaches_b790
753.88/_9.0
M auricie sud
1
1
2
XC4_boucherville
345.7 MX @ 315 KV. Fusible externe
nicolet_b707
748.86/_6.0
gentilly_b2100
742.00/_-0.0
73.3
LF
1M
+
+
chenier_T4aT6
trois -rivières _b2268
3
-exst1
-ieeevc (s.o.)
-pss4b
duvernay_b702
L7046
+
+
jacquescartier_b317
M auricie nord
742.28/_1.9
CP
60
L7097
CP
I
levis_CLC
110.2
+
CP
L3102_L3110_L3106_L3107
117.4
1
1
2
V
310.02/_5.0
+
83.9
305.45/_-1.8
+
mauricie_b488
m auricie_b488
739.58/_1.4
1
U1pu
I1
jacquescartier_b317
+
CP
78.4
-
duvernay_L7016
+
U1pu
I1
-
L3100_L3101
L3015
+
L3005
+
-
+
B317_capac
1M
CP
45.90
carignan_b730
chenier_b715
2
U1pu
I1
-
3
1
I1
U1pu
2
+
+
CP
3
lanaudiere_b1262
+
+
1
176.8
LF
U1pu
I1
+
L7047
CP
-
+
CP
+
+
+
+
CP
45.3
L3016
LF
768MW
138MVAR
+
LF
460MW
66MVAR
1M
2
+
L3069
1
3
1M
I/O FILES
LCD11_LCD22
boundarycrt_b1025
LF
1M
LF
+ [R,L]
descantons_b755
+
LF
+
749.84/_3.7
U1pu
I1
+
2
+
-
1
96 MX @ 120 KV
3
1M
+
3
1
+
2
U1pu
I1
+
LF
330 MX
165 MX
2
165 MX
3
2003
chateauguay_b719
+
L7048
751.38/_-0.8
+
monteregie_b784
165 MX
748.57/_1.0
L7049
CP
L7042
CP
93.4
+
+
3
1
735/120/12.5
1
LF
2
-
1M
+
+
3
1
+
2
1M
+
+
CP
L7040
massena_b818
5
U1pu
I1
+
+
746.90/_-0.7
1M
hertel_b708
88.980
LF
massena_b818
CP
+
L7038
46.1
+
+
2003
70.20
Groupe – Technologie
CP
70.61
MiseEnService=2003
+
B2055_capac
filtre CC
234MW
46.5MVAR
REpower
EXP
GE
+
2
2
+
CP2
LF
+
+
SC
Montagne-Sèche
GE 58.5 MW
CP
1
EXP
LF
Ves tas
V 80
Wind
Optis lip
2
1
2
1
GE
EXP
3
1
2
2
+
CP
+
+
1
2
1
DF
EXP
+
2
CP
GE
+
1
+
+
+
1
2
2
1
+
2
1
2
+
EXP
1
CP
DF
EXP
CP
CP2
CP
+
CP
+
1
+
CP2
CP
+
+
CP
CP
+
+
CP
CP
+
+
CP
CP
3
CP
2
2
2
Groupe – Technologie
EXP
EXP
EXP
EXP
EXP
EXP
1
2
1
1
2
1
2
2
1
1
2
1
2
2
1
1
EXP
EXP
+
DC
MICMAC
230/161 kV
EXP
+
+
2
EXP
+
1
CP
+
1
+
3
2
1
+
+
161 kV
1
2
CP
+
1
230 kV
2
2
1
3
2
1
+
3
CASCAPÉDIA
230/69 kV
+
3
+
+
CP
1
CP
+
New Richmond
Enercon 66 MW
CP
LF
2
2
3
+
+
+
+
2
+
3
+
+
+
2
+
2
+
+
+
+
1
2
+
1
CP2
+
TO NEW-BRUNSWICK
1
CP
+
LVRT
VRCC
AG 04
CP2
DC
SC
LF
+
+
+
2
LF
LF
CP
+
LF
230 kV
CP2
1
+
2
LF
+
2
+
+
3
1
CP
1
1
Enerc on
DF
1
+
1
+
LF
EXP
2
+
+
2
Ves tas
V 80
Optis lip
LVRT
VRCC
AG 04
+
2
1
LF
2
+
3
LF
+
+
LF
CP2
+
2
MATAPÉDIA
315/230 kV
+
2
+
1
+
+
CP
+
LF
+
LF
LF
+
LF
+
+
+
+
+
+
+
Wind
+
AC Filters
TO NEW-BRUNSWICK
6
Mont Miller
Vestas 54 MW
CP
1
+
+
+
+
+
Riv ière-Sainte-Anne
Capacitiv e Div ider
161 kV
+
2
GE
315 kV
+
AC Filters
St-Ulric/St-Léandre
GE127.5 MW
+
Carleton
GE 109.5 MW Mont Copper
Vestas 54 MW
1
315 kV Lines
230 kV Lines
161 kV Lines
120 kV Lines
69 kV Lines
34,5 kV Lines
25 kV or less Lines
+
36 M VAR
1
CP
2
LF
+
DF
1
CP2
EXP
1
Temiscouata
Enercon 25 MW
+
+
+
CP
+
+
+
+
+
+
+
+
+
+
+
+
+
+
SC Sy nchronous Condenser
2
+
+
2
+
CP
2
1
2
Vent du Kempt
Enercon100 MW
+
2
Zigzag Grounding Transf ormer
Nordais-2
Neg Micon 57 MW
GE
+
EXP
Enerc on
1
2
DF
1
NM 750/48
CP
DF
1
1
+
LF
LF
2
1
CP
+
DC HVDC Interconnection
CP
1
CP
+
+
CP2
2
2
+
1
2
+
3
LF
+
CP
+
1
M AS à
cage
d'écur euil
EXP
Lac Alf red
REpower 325 MW
+
1
Enerc on
2
EXP
+
Enerc on
Three-Winding Transf ormer
1
2
Le Plateau
Enercon 161 MW
2
CP2
LF
2
1
2
CP
+
CP
+
1
REpower
1
315 kV
2
EXP
+
+
1
CP
2
CP2
N2
NM 750/48
+
2
CP2
NEG
M ICON
750 k W 57M W
Nordais-1
Neg Micon 43 MW
+
CP
+
+
CP
2
CP2
M AS à
cage
d'écur euil
CP
CP
+
+
+
CP
CP
1
1
2
+
1
2
1
Load
CP2
NEG
M ICON
750 k W 43M W
+
St-Damase
Enercon 24 MW
CP
2
+
1
CP
3
3
LESBOULES
230/120 kV
Enerc on
EXP
LF
LF
CP2
N1
3
1
CP
2
CP
CP
LF
2
+
CP
+
+
1
CP
+
CP
+
CP
+
315 kV
Collector Sy stem For WPP
+
CP
CP2
+
+
LF
EXP
CP
+
CP
+
+
2
EXP
Two-Winding Transf ormer
CP
+
+
1
2
EXP
GE
DF
1
2
1
CP
1
3
2
1
230 kV
3
230 kV
CP2
+
CP
CP2
2
2
+
+
+
2
CP
1
RIMOUSKI 315/230 kV
315 kV
KAMOURASKA
315 kV
+
2
1
+
230 kV
+
3
2
1
+
CP
+
+
+
CP
CP
CP
CP
1
3
2
+
+
+
3
CP2
CP
CP2
ZnO
CP2
LF
KAM OURASKA
+
LF
EXP
EXP
1
1
+
CP2
Gros Morne
GE 211.5 MW
GE
1
1
3
+
EXP
+
2
3
2
+
3
+
2
LF
230 kV
3
2
3
2
Mont-Louis
GE 100.5 MW
GOÉMON
230/161/69 kV
EXP
1
1
+
2
2
LF
EXP
LF
2
+
EXP
1
EXP
1
DF
1
CP
+
2
1
LÉVIS
735/315 kV
CP
1
1
3
2
1
3
+
LF
2
2
1
LF
CP
2
1
1
TO 735 kV
SYSTEM
2
LF
+
1
1
2
EXP
1
2
1
1
2
2
1
1
1
2
2
CP
RIMOUSKI 230/69 kV
DF
+
+
RIVIÈRE-DU-LOUP
315/230/120 kV
+
CP
LF
2
2
EXP
1
+
+
+
LF
CP
+
+
LF
+
Baie-des-Sables
GE109.5 MW
LF
CP
+
+
Viger
REpower 25 MW
CP
CP
EXP
EXP
2
EXP
+
+
CP
1
2
2
1
+
+
CP
1
2
+
CP
CP
CP
+
+
CP
CP
+
EXP
EXP
EXP
1
EXP
2
1
1
2
EXP
EMTP model of Gaspésie system:
Integration of wind generation
CP
Anse-à-Valleau
GE 100.5 MW
Hydro-Québec
> Pioneered important research and development
works on advanced simulation methods for large
scale and complex power systems
> Advanced real-time simulation methods
> Advance off-line simulation methods
> Sophisticated utilization of simulation tools for
transmission and distribution network studies
> Integration of wind generation: 4 GW by 2015
•
Based on detailed studies of electromagnetic and
electromechanical transients
> At Hydro-Québec (TransÉnergie) the frequency
range of simulation models has been constantly
increasing with increasing computer speed,
improved models and numerical performance.
7
Groupe – Technologie
Real-Time simulator
> Capability to solve power systems quickly enough to
produce outputs synchronized with the real-time clock
A second of simulation = 1 second of clock time when testing equipment
> A real-time simulator can be connected directly to power system
control and protection equipment to test the equipment under
realistic conditions
•
•
For detecting abnormal operating conditions that cannot be found through
numerical models
For super-fast contingency analysis
> Hydro-Québec develops HYPERSIM: a real-time simulator
Develop, improve and assess new protection and control
concepts
Optimize the operation and the maintenance power systems
Decrease the time required to commission protection relays and
control systems (FACTS, HVDC, SVC, etc..)
Reproduce events that occurred in the power system by using the
actual protection and control systems
8
Groupe – Technologie
EMTP-RV
> Simulation and analysis of electromagnetic transients
> General purpose circuit analysis tool: wideband, from
steady-state to time-domain
> Detailed simulation and analysis of large scale electrical
systems
> Network analysis: network separation, power quality,
geomagnetic storm, interaction between compensation
and control components, wind generation
> Synchronous machines: SSR, auto-excitation, control
> Multiterminal HVDC systems, Power electronics
> Series compensation: MOV energy absorption, shortcircuit conditions, network interaction
> Transmission line systems: insulation coordination,
switching, design, wideband line and cable models
> Switchgear: TRV, shunt compensation, current chopping,
delayed-current zero conditions
> Protection: power oscillations, saturation problems
> Detailed transient stability analysis: more and more
> Off-line tool: May save millions in design and operation!
9
Groupe – Technologie
Simulation and Analysis
> The basis of all problems!
> Modern power grids require advanced study
and analysis methods
for power system design
• operation
• post-mortem analysis
•
> Numerical models and solution methods now
play a dominant role and contribute to all
research and development levels.
> The needs for grid simulations increase
significantly faster than the capability of
researchers to deliver models and faster
simulations methods.
10
Groupe – Technologie
Simulation and Analysis
> Simulation and modeling are essential for the evolution
and operation of modern power systems
> Can we build an electronic copy of the operated
system?
> Can we merge real-time and off-line simulation tools?
> Can we replicate analog simulator style with numerical
simulators?
> What is the highest computational speed?
> How far: wideband and size
> Can we unify simulation environments to work with
unique data sets and various analysis methods?
> Can we create portable models and data?
> Use Concurrent and multi-domain simulation methods
11
Groupe – Technologie
New trends: Cloud computing
> Applications for power systems
•
•
•
>
>
>
>
Dispatching of computing jobs into a resource pool
Simulation services with centralized and shared data
Increased utilization of available computing services
Higher automation levels
•
•
•
•
12
Generation scheduling, unit commitment
– Complex optimization problems
Load-flow
– Probabilistic methods
Transient stability and electromagnetic transients
– Acceleration of simulations
– Sensitivity analysis
– Contingency analysis
Reduced human intervention
Private cloud systems
Public cloud systems
Community cloud: organizations working together
Groupe – Technologie
New Trends: Parallel computing
> Availability of increasing calculation capabilities
through multicore computers
> Power system simulations involve the solution of linear
sparse systems
> Traditional methods are generally sequential and use
only one CPU
> The matrices are very sparse, moderate size, coupled
and unsymmetrical
> For Load flow and steady-state studies the matrices are
coupled but the solution is performed once
> For time domain it is possible to use the natural delay of
the lines to decouple the system. Not always feasible!
> It is essential to explore new ways to increase the
speed of calculations while maintaining accuracy
> Hydro-Québec with Ecole Polytechnique of Montreal and
RTE (France) are collaborating in an important research
project to increase the speed of calculations using the
possibilities offered by new technologies
13
Groupe – Technologie
New Trends: Collaborative computing,
Co-simulation
> Parallel computing can be done in a
collaborative approach
> Several simulation tools addressing different
aspects, telecom, control, electromechanical
and electromagnetic transients, collaborate
together to simulate the same power system
> Collaborative software environment can be
implemented through a co-simulation channel
in an indirect interaction (FMI)
> Use Federated simulation systems run-time
infrastructure (RTI) to support
interoperability (HLA)
> Scalable performance via parallel and
distributed simulation techniques
14
Groupe – Technologie
ibb10
vcb10 vbb10 vab10iab10_2 ibb10_2
Groupe – Technologie
vcb10_2
vab10_2
vbb10_2
avr_sexs_ieeest_govG3_pu
Omega_1
?
1
2
YgYg_np11
20/500
Network frequency
or rotor speed (pu)
interface_b10_2
20kV
1000MVA
PVbus:LF7
?m
BUS34
G7
p
SM
ibb19
in
vbb19
out
va
vb
vc
PI28 +
GE_DFIG_mean_b19
Qref
PI
PI29 +
2
1
YgYg_np3
LF
LF6
283.5MW
26.9MVAR
308.6MW
-92MVAR
AVR_Gov_6
in AVR+Gov
(pu)
out
Load17 LF
?i?p
Load12 LF
P=650MW
V=20.1kVRMSLL
SM:G6
G6
SM
PQ
DEV1
BUS24
-exc. sexs
-pss ieeest
-gov ieeeg3
500/500
247.5MW
84.6MVAR
Load11 LF
Interface_b19
c
20/500
PI
?m
?
YgYg_np4
2
1
?m
G9
SM
LF
P=830MW
V=20.8kVRMSLL
SM:G9
LF9
SW7 ?vi
+
-1|1E15|0
-1|1E15|0
+
?vi SW9
out
in
AVR_Gov_9
AVR+Gov
(pu)
-exc. sexs
-pss ieeest
-gov ieeeg3
Omega_1
Network frequency
or rotor speed (pu)
avr_sexs_ieeest_govG3_pu
PI
LF
LF7
BUS13
Omega_1
f(pu)
avr_sexs_ieeest_govG3_pu
206MW
27.6MVAR
LF
Load16
+ PI34
P=560MW
V=20.2kVRMSLL
SM:G7
?i
+A
PQb19 Ieolb19
?
BUS16
Qrefb19
DFIG
+ PI27
-1.8e-1
-1|1E15|0
+
?vi SW14
BUS35
20kV
1000MVA
PVbus:LF6
-1|1E15|0
BUS28
LF
P=508MW
V=20.2kVRMSLL
SM:G5
PQ
va
vb
vc
PI
PI24 +
-1|1E15|0
PI
+
PI26 + ?vi SW25
+
?viSW16
BUS17
ia
ib
PI
-1|1E15|0
+
?vi SW26
PI
PI31 +
LF Load14
139MW
17MVAR
PI
AVR_Gov_7
ia
ib
+ PI23
PI
PI
20kV
1000MVA
PVbus:LF5
20/500
LF5
BUS19
LF Load9
628MW
103MVAR
1
2
DYg_2
Omega_1
Ieolb10_2
?m
BUS10
PI21 +
+ PI25
G5
p
BUS21
?
Load10 LF
274MW
115MVAR
Load15
LF
281MW
75.5MVAR
+
+A
?i
BUS26
1
2
YgYg_np9
BUS14
1
BUS15
2
SW10
PI20
SW27
?vi
+
?vi
+
+
PI
-1|1E15|0
-1|1E15|0
PI
PI30
PQ
Interface_b25_2
avr_sexs_ieeest_govG3_pu
interface_b10
PI22 +
PI
PI19 +
BUS27
SW18 ?vi
+
-1|1E15|0
AVR+Gov
(pu)
va
vb
vc
+ PI32
in
ia
ib
PQb10_2
YgYg_np10
+
SW8 ?vi
+
1E15|1E15|0
PI
SM
PQb10
?
PI
Load8
BUS25
+ PI33
Network frequency
or rotor speed (pu)
Ieolb10
SW20 ?vi
+
-1|1E15|0
out
AVR_Gov_5
b10vRMS
PI18
BUS12
?vi SW11
+
10|10.1|0
+
BUS18
PQ
PI
500/500
SW6 ?vi
+
1E15|1E15|0
BUS3
Load6
PI
320MW
153MVAR
LF
LF
158MW
30MVAR
PQ
?i
BUS31
iab25_2
AVR+Gov
(pu)
-exc. sexs
-pss ieeest
-gov ieeeg3
iab10
DEV2
PI17
BUS11
PI
SW1 ?vi
+
1E15|1E15|0
500/0.575
500/500
Load7 LF
329MW
32.3MVAR
BUS4
2
1
YgYg_np5
SW2?vi
+
-1|1E15|0
Ieolb25_2
?
+
PQb25_2
ib
ia
1
BUS5
PI
Interface_b25
PI8
2
500/0.575
ibb2 iab2
2
DYg_3
BUS6
LF
Load13
DYg_4
1
p
b25vRMS
PI6 +
224MW
47.2MVAR
vc
vb
va
ibb25_2
A+
PQ
?vi SW4
+
-1|1E15|0
500kV
1000MVA
Slack:LF1
PI
PI
PI3 +
ib
ia
2
1
YgYg_np6
PI
PI5 +
BUS2
?
+
+A
?i
vbb25_2
vcb25_2
?i
A+
+
Load5
PI
SM
PI7
PQ
vab25_2
ibb25 iab25
PI
PI16
PI12
LF
+ PI2
7.5MW
LF 88MVAR
+
PI
vc
vb
va
P=527MW
V=20.9kVRMSLL
SM:G2
LF
LF2
Phase:0
PI
Network frequency Omega_1
or rotor speed (pu)
322MW
2.4MVAR
Ieolb25
Load2
+ PI4
PQb25
LF
Ieolb2
+A
?i
vab25 vbb25 vcb25
avr_sexs_ieeest_govG3_pu
Omega_1
PI
PI1 +
PQ
ib
ia
Network frequency
or rotor speed (pu)
500MW
184MVAR
BUS1
500/0.575
2
DYg_5
1
interface_b2
G2
20/500
in
SM
?
BUS7
1
2
YgYg_np8
Load19
LF
1104MW
250MVAR
-exc. sexs
-pss ieeest
-gov ieeeg3
BUS8
SW5
?vi
+
-1|1E15|0
G1
?m
SW3 ?vi
+
1E15|1E15|0
avr_sexs_ieeest_govG3_pu
20kV
1000MVA
PVbus:LF2
+
?m
out
PI
PI9
in
+
Slack: 502.4kVRMSLL/_0
SM:G1
LF
LF1
Phase:0
AVR_Gov_2
BUS9
PI
BUS39
out
PI11
+
p
b2vRMS
AVR+Gov
(pu)
+
+
PI
-exc. sexs
-pss ieeest
-gov ieeeg3
PI15
AVR_Gov_1
PI10
PI
PQb2
PI13
+
vc
vb
va
PI
233.8MW
84MVAR
Load3 LF
PI
AVR+Gov
(pu)
PI14
vab2 vbb2 vcb2
Load18 LF
9.2MW
4.6MVAR
522MW
176MVAR
Load4 LF
Application: Large-scale Case
diverse simulators (EMTP, Simulink)
BUS38
BUS29
20/500
PI
BUS22
vab19
500/0.575
vcb19
b19vRMS
iab19
BUS23
BUS20
BUS36
Challenges
> Decoupling : Where & How ???
•
•
•
Delays (measurement/controlled source)
Transfer of slowly changing states: need for
filters!
Automation of decoupling!
> Diverse solution methods:
•
Synchronization issues (e.g. Check for
instantaneous power injected by WTG !)
> Global solution for all variables (not
only interface) & impact on validity
for all types of studies
Groupe – Technologie
Conclusions
> Research on power system simulation and
analysis tools is now facing new and major
challenges:
•
•
•
Simulation of extremely large networks
Very complex networks, penetration of renewables
energy
Smart Grids
> New trends and means for solving increasingly
complex problems
•
•
•
•
•
Parallel computations
Cloud computing
Collaborative computing
Advanced visualization methods
Data portability with CIM
> Major research and revisions are needed in
existing simulation tools
17
Groupe – Technologie