Quantitative Methods Using more than one explanatory variable Using more than one explanatory variable Why use more than one? • Intervening or “3rd” variables.

Download Report

Transcript Quantitative Methods Using more than one explanatory variable Using more than one explanatory variable Why use more than one? • Intervening or “3rd” variables.

Quantitative Methods
Using more than
one explanatory variable
Using more than one explanatory variable
Why use more than one?
• Intervening or “3rd” variables (schoolchildren’s maths)
• Reducing error variation (saplings)
• There is more than one interesting predictor (trees)
Using more than one explanatory variable
Statistical elimination
Using more than one explanatory variable
Statistical elimination
Using more than one explanatory variable
Statistical elimination
Using more than one explanatory variable
Statistical elimination
Using more than one explanatory variable
Statistical elimination
Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
2761.1
Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
Using more than one explanatory variable
Why use more than one?
• Intervening or “3rd” variables (schoolchildren’s maths)
• Reducing error variation (saplings)
• There is more than one interesting predictor (trees)
Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
Using more than one explanatory variable
Why use more than one?
• Intervening or “3rd” variables (schoolchildren’s maths)
• Reducing error variation (saplings)
• There is more than one interesting predictor (trees)
Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
Using more than one explanatory variable
Sequential and Adjusted Sums of Squares
MTB > glm lvol=lhgt;
SUBC> covar lhgt.
Source
LHGT
Error
Total
DF
1
29
30
Seq SS
3.5042
4.8080
8.3122
Adj SS
3.5042
4.8080
Adj MS
3.5042
0.1658
F
21.14
P
0.000
Adj SS
0.1987
4.6234
0.1846
Adj MS
0.1987
4.6234
0.0066
F
30.14
701.33
P
0.000
0.000
MTB > glm lvol=lhgt+ldiam;
SUBC> covar lhgt ldiam.
Source
LHGT
LDIAM
Error
Total
DF
1
1
28
30
Seq SS
3.5042
4.6234
0.1846
8.3122
Using more than one explanatory variable
Models and parameters
Using more than one explanatory variable
Models and parameters
Y=+
Unknown quantities we would like to know, in Grk
Known quantities that are estimates of them, in Latin
Using more than one explanatory variable
Models and parameters
Y=+
Fertil Coeff 


1 
 A
YIELD    
 
2 
 B
 C
1  2 


AMA      YEARS    HGHT  
Water

Coeff


1
 A



2
FINALHT      INITHT   B
 
 C

3



1  2  3 
 D

WGHT      LLEG    RLEG  
LVOL      LDIAM    LHGT  
Using more than one explanatory variable
Models and parameters
LVOL      LDIAM    LHGT  
MTB > glm lvol=ldiam+lhgt;
SUBC> covar ldiam lhgt.
Analysis of Variance for LVOL, using Adjusted SS for Tests
Source
LDIAM
LHGT
Error
Total
DF
1
1
28
30
Seq SS
7.9289
0.1987
0.1846
8.3122
Term
Constant
LDIAM
LHGT
Coef
-6.6467
1.98306
1.1203
SE Coef
0.7983
0.07488
0.2041
Adj SS
4.6234
0.1987
0.1846
T
-8.33
26.48
5.49
Adj MS
4.6234
0.1987
0.0066
P
0.000
0.000
0.000
F
701.33
30.14
P
0.000
0.000
Using more than one explanatory variable
Models and parameters
LVOL      LDIAM    LHGT  
MTB > glm lvol=ldiam+lhgt;
SUBC> covar ldiam lhgt.
Analysis of Variance for LVOL, using Adjusted SS for Tests
Source
LDIAM
LHGT
Error
Total
DF
1
1
28
30
Seq SS
7.9289
0.1987
0.1846
8.3122
Term
Constant
LDIAM
LHGT
Coef
-6.6467
1.98306
1.1203
SE Coef
0.7983
0.07488
0.2041
Adj SS
4.6234
0.1987
0.1846
T
-8.33
26.48
5.49
Adj MS
4.6234
0.1987
0.0066
F
701.33
30.14
P
0.000
0.000
0.000
Fitted LVOL = -6.6467 + 1.98306*LDIAM + 1.1203*LHGT
P
0.000
0.000
Using more than one explanatory variable
Models and parameters
Model
Model Formula
Best Fit Equation
LVOL      LDIAM    LHGT  
lvol=ldiam+lhgt
Fitted LVOL = -6.6467 + 1.98306*LDIAM + 1.1203*LHGT
Using more than one explanatory variable
Models and parameters
MTB > glm lvol=ldiam;
SUBC> covariate ldiam.
Analysis of Variance for LVOL
Source
LDIAM
Error
Total
DF
1
29
30
Seq SS
7.9254
0.3832
8.3087
Adj SS
7.9254
0.3832
Adj MS
F
P
7.9254 599.72 0.000
0.0132
Using more than one explanatory variable
Models and parameters
MTB > glm lvol=ldiam;
SUBC> covariate ldiam.
Analysis of Variance for LVOL
QuickTime™ and a
Animation decompressor
are needed to see this picture.
QuickTime™ and a
Animation decompressor
are needed to see this picture.
Source
LDIAM
Error
Total
DF
1
29
30
QuickTime™ and a
Animation decompressor
are needed to see this picture.
Seq SS
7.9254
0.3832
8.3087
Adj SS
7.9254
0.3832
Adj MS
F
P
7.9254 599.72 0.000
0.0132
QuickTime™ and a
Animation decompressor
are needed to see this picture.
Using more than one explanatory variable
Models and parameters
QuickTime™ and a
Animation decompressor
are needed to see this picture.
Source
LDIAM
Error
Total
DF
1
29
30
Seq SS
7.9254
0.3832
8.3087
Adj SS
7.9254
0.3832
Adj MS
F
P
7.9254 599.72 0.000
0.0132
Source
LDIAM
LHEIGHT
Error
Total
DF
1
1
28
30
Seq SS
7.9254
0.1978
0.1855
8.3087
Adj SS
4.6275
0.1978
0.1855
Adj MS
F
P
4.6275 698.63 0.000
0.1978 29.86 0.000
0.0066
QuickTime™ and a
Animation decompressor
are needed to see this picture.
QuickTime™ and a
Animation decompressor
are needed to see this picture.
Using more than one explanatory variable
Geometry in 3-D
Using more than one explanatory variable
Geometry in 3-D
Source
LHGT
LDIAM
Error
Total
DF
1
1
28
30
Seq SS
3.5042
4.6234
0.1846
8.3122
Adj SS
0.1987
4.6234
0.1846
Adj MS
0.1987
4.6234
0.0066
F
30.14
701.33
P
0.000
0.000
Source
LDIAM
LHGT
Error
Total
DF
1
1
28
30
Seq SS
7.9289
0.1987
0.1846
8.3122
Adj SS
4.6234
0.1987
0.1846
Adj MS
4.6234
0.1987
0.0066
F
701.33
30.14
P
0.000
0.000
Using more than one explanatory variable
Geometry in 3-D
Using more than one explanatory variable
Geometry in 1-D
Using more than one explanatory variable
Last words…
• Two or more x-variables are often useful and
often necessary, and are easy to fit
• Two variables may duplicate or mask each
others’ information
• Seq and Adj SS, plug-in parts, statistical
elimination
• Model, model formula, and best fit equation
Next week: Designing experiments
Read Chapter 5