E E 1205 Measurements, Data & Accuracy Measurements • Essential to Engineering • Multitude of Sensors – – – – Electromagnetic Hall Effect Photonic Simple • Yardstick • Spring Scales • Measuring cups.

Download Report

Transcript E E 1205 Measurements, Data & Accuracy Measurements • Essential to Engineering • Multitude of Sensors – – – – Electromagnetic Hall Effect Photonic Simple • Yardstick • Spring Scales • Measuring cups.

E E 1205 Measurements, Data & Accuracy

Measurements • Essential to Engineering • Multitude of Sensors – Electromagnetic – Hall Effect – Photonic – Simple • Yardstick • Spring Scales • Measuring cups

Measurements • Electrical – Conductivity – Field Strength • Electric • Magnetic – Frequency/Timing – Voltage – Current – Power/Energy – Luminosity

Representing Data • Significant Digits – 3.14159

– 2.73

(6 sig. digits) (3 sig. digits) • Decimal Places – 3.14159

– 0.036

(5 dec. places) (3 dec. places)

Representing Data • Scientific Notation – 7.382 x 10 -8 – -4.690 x 10 5 • Engineering Notation – 45.2 x 10 -6 – -613.8 x 10 3

Rounding Off Numbers • 52.3691

– 52.369

– 52.37

– 52.4

• 73.85

– 73.8

• 27.55

– 27.6

Excessive Significant Digits • Do not display more significant digits than can be justified – Area calculation: l = 27.4 cm, w = 18.6 cm A = l x w = 510 cm 2 , not 509.64

Measurement

Accuracy and Precision

Voltage Divider Circuit

+ V 1 V s I R 1 R 2 + V 2 Measure V 2

V s

  1 

V

2   2 

R

2 

R

1

V s

R

2

R

2

I

 

R

1

V s

R

2

R

1

R

2 

R

2

V s

Loaded Voltage Divider

R 1 V s

R eq

R R R

2

L

2 

R L V o

V s

1  2 

R R

2

L R L

 

R R

2

L

R 2 + V o R L

V o

V s R eq R eq

R

1

Voltage Divider Equations

Unloaded: Loaded:

V o V o

 

V s V s R

1  

R

1

R

2 

R

2

R

2

R

2

R L

 

If R L >> R 2 :

V o

V s R

1

R

2 

R

2

R

2

Current Divider Circuit (1/2)

I s + v o i 1 G 1 i 2 G 2 If there are only two paths:

v o

i

1

G

1 

i

2

G

2 

G

1

I

s G

2

i

2 

I s G

1

G

2 

G

2 

I s

1

R

1 1

R

2  1

R

2

Current Divider Circuit (2/2)

i

2 

I s

1

R

1 1

R

2  1

R

2

R R

1 2

R R

1 2 

I s R

1

R

1 

R

2

In general:

i n

I s G

1 

G

2

G n

 

G n

D’Arsonval Meter Movement

• Permanent Magnet Frame • Torque on rotor proportional to coil current • Restraint spring opposes electric torque • Angular deflection of indicator proportional to rotor coil current

S N

A D’Arsonval Voltmeter

D’Arsonval Voltmeter

• Small voltage rating on movement (~50 mV) • Small current rating on movement (~1 mA) • Must use voltage dropping resistor, R v

+ V x R v I + V Rv d'A + V d'A -

Example: 1 Volt F.S. Voltmeter 950

W

1 mA + 1.0 V + 0.95 V + 50 mV Note: d’Arsonval movement has resistance of 50

W

Scale chosen for 1.0 volt full deflection.

Example: 10V F.S. Voltmeter 9950

W

1 mA + 10 V + 9.95 V + 50 mV Scale chosen for 10 volts full deflection.

D’Arsonval Ammeter

• Small voltage rating on movement (~50 mV) • Small current rating on movement (~1 mA) • Must use current bypass conductor, G a

I x G a I Ga + V d'A I d'A

Example: 1 Amp F.S. Ammeter 1.0 A 19.98 S 999 mA + 50 mV 1 mA Note: d’Arsonval movement has conductance of 0.02 S G a = 19.98 S has ~50.050 m

W

resistance.

Scale chosen for 1.0 amp full deflection.

Example: 10 Amp F.S. Ammeter 10 A 199.98 S 9.999 A + 50 mV 1 mA G a = 199.98 S has ~5.0005 m

W

resistance.

Scale chosen for 10 amp full deflection.

Measurement Errors

• Inherent Instrument Error • Poor Calibration • Improper Use of Instrument • Application of Instrument Changes What was to be Measured – Ideal Voltmeters have Infinite Resistance – Ideal Ammeters have Zero Resistance

Example: Voltage Measurement 400

W

45 V 100

W

+ V o 10 k

W

volt meter True Voltage:

V o

 45

V

100 W 500 W  9

V

(If voltmeter removed)

Example: Voltage Measurement Measured Voltage:

V o

 45

V

400    100 W 100 W 10

k

W     100 W  8.9286

%

Error

   8.9286

V

9.0

V

     0.794%

Another Voltage Measurement (1/2) 40 k

W

45 V 10 k

W

+ V o 10 k

W

volt meter True Voltage:

V o

 45

V

10

k

W 50

k

W  9

V

(If voltmeter removed)

Another Voltage Measurement (2/2) Measured Voltage:

V o

 45

V

40

k

   10

k

W 10

k

W 10

k

W     10

k

W  5.0

V

%

Error

   5.0

V

9.0

V

     44.44%

Example: Current Measurement (1/2) 100

W

5A 25

W

I o 50 m

W

Ammeter True Current:

I o

 5 25

A

125 W W  1.0

A

(If ammeter replaced by short circuit)

Example: Current Measurement (2/2) Measured Current:

I o

 5 25 W

A

125.05

W  0.9996

A

%

Error

   0.9996

A

 1.0

A

    .04%

Another Current Measurement (1/2) 100 m

W

5A 25 m

W

I o 50 m

W

Ammeter True Current:

I o

 5 25

A

125

m

W

m

W  1.0

A

(If ammeter replaced by short circuit)

Another Current Measurement (2/2) Measured Current:

I o

 5 25

A

175

m

W

m

W  0.7143

A

%

Error

   0.7143

A

 1.0

A

    28.57%

A Digital Voltmeter • Integrating Converter • Dependent on V ref • Dependent on Temperature • Independent of RC

How the DVM Works

V V

 

V in RC t u V ref RC t d

V V ref RC t d

 

V in RC t u V in

 

V ref t d t u

DVM Example

V ref

  5

V R

 10

k

W

C

If  10

t d

F t u

 50

ms

 100

ms V in

 5

V

 50

ms

100

ms

 2.5

V

Hall Effect Transducer • Use as Gaussmeter • Use as Wattmeter

Measuring Resistance

• Indirect – Measure Voltage across Resistor – Measure Current through Resistor – Calculate Resistance (Inaccurate) • d’Arsonval Ohmmeter – Very Simple – Inaccurate • Wheatstone Bridge (Most Accurate)

D’Arsonval Ohmmeter

R

b V b

R

x

R

adj Need to adjust R adj change.

and zero setting each scale

Ohmmeter Example 5 2.

5 45 0 150 50 7.5

8 10 mA Full Scale (Outer Numbers) R b +R adj +R d’A =150

W

Inner (Nonlinear) Scale in Ohms V b =1.5 V

Wheatstone Bridge

R g V g R 1 a c I 1 R 2 + Vab I ab R 3 R x I 3 d b I 2 I x V ab = 0 and I ab = 0 V ad = V bd I 1 = I 3 R R

R x

1 3 I I 1 3 =R =R I

2  3

R

1

2 x 2 I I 2 x = I x

100

W

I 1 kV

Example: Wheatstone Bridge

c 150

W

a 450

W

R q 300

W

b 900

W

d

150 W 450 W  300 W 900 W

I = 2 A