• • • • • • • Readings: Uranium chapter: http://radchem.nevada.edu/classes/r dch710/files/uranium.pdf Chemistry in the fuel cycle Uranium Solution Chemistry Separation Fluorination and enrichment Metal Focus on chemistry in the fuel cycle Speciation.
Download ReportTranscript • • • • • • • Readings: Uranium chapter: http://radchem.nevada.edu/classes/r dch710/files/uranium.pdf Chemistry in the fuel cycle Uranium Solution Chemistry Separation Fluorination and enrichment Metal Focus on chemistry in the fuel cycle Speciation.
• • • • • • • Readings: Uranium chapter: http://radchem.nevada.edu/classes/r dch710/files/uranium.pdf Chemistry in the fuel cycle Uranium Solution Chemistry Separation Fluorination and enrichment Metal Focus on chemistry in the fuel cycle Speciation (chemical form) Oxidation state Ionic radius and molecular size Utilization of fission process to create heat Heat used to turn turbine and produce electricity Requires fissile isotopes • 233U, 235U, 239Pu Need in sufficient concentration and geometry 233U and 239Pu can be created in neutron flux 235U in nature Need isotope enrichment Ratios of isotopes established 234: 0.005±0.001, 68.9 a 235: 0.720±0.001, 7.04E8 a 238: 99.275±0.002, 4.5E9 a RFSS: Lecture 11 Uranium Chemistry and the Fuel Cycle Fission properties of uranium Defined importance of element and future investigations Identified by Hahn in 1937 200 MeV/fission 2.5 neutrons 1 U Fuel Cycle Chemistry Overview • Uranium acid-leach • Extraction and conversion Understand fundamental chemistry of uranium and its applications to the nuclear fuel cycle 2 Fuel Fabrication Enriched UF6 Calcination, Reduction Pellet Control 40-60°C UO2 Tubes Fuel Fabrication Other species for fuel nitrides, carbides Other actinides: Pu, Th 3 Uranium chemistry • Uranium solution chemistry • Separation and enrichment of U • Uranium separation from ore Solvent extraction Ion exchange • Separation of uranium isotopes Gas centrifuge Laser • • 200 minerals contain uranium Bulk are U(VI) minerals U(IV) as oxides, phosphates, silicates Classification based on polymerization of coordination polyhedra Mineral deposits based on major anion Pyrochlore A1-2B2O6X0-1 A=Na, Ca, Mn, Fe2+, Sr,Sb, Cs, Ba, Ln, Bi, Th, U B= Ti, Nb, Ta U(V) may be present when synthesized under reducing conditions * From XANES spectroscopy 4 * Goes to B site Uraninite with oxidation Uranium solution chemistry overview • • • Strong Lewis acid, Hard electron acceptor F->>Cl->Br-I Same trend for O and N group based on electrostatic force as dominant factor Hydrolysis behavior U(IV)>U(VI)>>>U(III)>U(V) U(III) and U(V) No data in solution Base information on lanthanide or pentavalent actinides • Uranyl(VI) most stable oxidation state in solution Uranyl(V) and U(IV) can also be in solution U(V) prone to disproportionation Stability based on pH and ligands Redox rate is limited by change in species Making or breaking yl oxygens * UO22++4H++2e-U4++2H2O • 5f electrons have strong influence on actinide chemistry For uranyl, f-orbital overlap provide bonding 5 Uranium chemical bonding: oxidation states • • Tri- and tetravalent U mainly related to organometallic compounds Cp3UCO and Cp3UCO+ Cp=cyclopentadiene * 5f CO p backbonding Metal electrons to p of ligands * Decreases upon oxidation to U(IV) Uranyl(V) and (VI) compounds yl ions in aqueous systems unique for actinides VO2+, MoO22+, WO22+ * Oxygen atoms are cis to maximize (pp)M(dp) Linear MO22+ known for compounds of Tc, Re, Ru, Os * Aquo structures unknown Short U=O bond distance of 1.75 Å for hexavalent, longer for pentavalent Smaller effective charge on pentavalent U Multiple bond characteristics, 1 s and 2 with p characteristics 6 • • • Uranium solution chemistry Trivalent uranium Very few studies of U(III) in solution No structural information Comparisons with trivalent actinides and lanthanides Tetravalent uranium Forms in very strong acid Requires >0.5 M acid to prevent hydrolysis Electrolysis of U(VI) solutions * Complexation can drive oxidation Coordination studied by XAFS Coordination number 9±1 * Not well defined U-O distance 2.42 Å O exchange examined by NMR Pentavalent uranium Extremely narrow range of existence Prepared by reduction of UO22+ with Zn or H2 or dissolution of UCl5 in water U(V) is not stable but slowly oxidizes under suitable conditions No experimental information on structure Quantum mechanical predictions 7 Hexavalent Uranium • • • Large number of compounds prepared Crystallization Hydrothermal Determination of hydrolysis constants from spectroscopic and titration Determine if polymeric species form Polynuclear species present except at lowest concentration Hexavalent uranium as uranyl in solution 8 Uranyl chemical bonding • • • Uranyl (UO22+) linear molecule Bonding molecular orbitals sg2 su2 pg4 pu4 Order of HOMO is unclear * pg< pu< sg<< su proposed Gap for s based on 6p orbitals interactions 5fd and 5ff LUMO Bonding orbitals O 2p characteristics Non bonding, antibonding 5f and 6d Isoelectronic with UN2 Pentavalent has electron in non-bonding orbital 9 0.126 M UO 2+ 2 0.2 8 M HNO 3 4 M HNO 0.15 3 1 M HNO Absorbance 3 0.1 M HNO 3 0.1 0.05 0 350 400 450 Wavelength (nm) 500 10 550 Uranyl chemical bonding • yl oxygens force formal charge on U below 6 Net charge 2.43 for UO2(H2O)52+, 3.2 for fluoride systems Net negative 0.43 on oxygens Lewis bases * Can vary with ligand in equatorial plane * Responsible for cation-cation interaction * O=U=O- - -M * Pentavalent U yl oxygens more basic • Small changes in U=O bond distance with variation in equatoral ligand • Small changes in IR and Raman frequencies Lower frequency for pentavalent U Weaker bond 11 Uranium speciation • Speciation variation with uranium concentration Hydrolysis as example Precipitation at higher concentration Change in polymeric uranium species concentration CHESS Calculation 12 Uranium purification from ores: Using U chemistry in the fuel cycle • Preconcentration of ore Based on density of ore • Leaching to extract uranium into aqueous phase Calcination prior to leaching Removal of carbonaceous or sulfur compounds Destruction of hydrated species (clay minerals) • Removal or uranium from aqueous phase Ion exchange Solvent extraction Precipitation Acid solution leaching * Sulfuric (pH 1.5) U(VI) soluble in sulfuric Anionic sulfate species Oxidizing conditions may be needed MnO2 Precipitation of Fe at pH 3.8 Carbonate leaching Formation of soluble anionic carbonate species * UO2(CO3)34 Precipitation of most metal ions in alkali solutions Bicarbonate prevents precipitation of Na2U2O7 * Formation of Na2U2O7 with further NaOH addition Gypsum and limestone in the host aquifers necessitates carbonate leaching 13 Recovery of uranium from solutions • • • Ion exchange U(VI) anions in sulfate and carbonate solution UO2(CO3)34 UO2(SO4)34 Load onto anion exchange, elute with acid or NaCl Solvent extraction Continuous process Not well suited for carbonate solutions Extraction with alkyl phosphoric acid, secondary and tertiary alkylamines Chemistry similar to ion exchange conditions Chemical precipitation Addition of base Peroxide Water wash, dissolve in nitric acid Ultimate formation of (NH4)2U2O7 (ammonium diuranate), yellowcake heating to form U3O8 or UO3 14 Uranium purification • Tributyl phosphate (TBP) extraction Based on formation of nitrate species UO2(NO3)x2-x + (2-x)NO3- + 2TBP UO2(NO3)2(TBP)2 Process example of pulse column below 15 Uranium enrichment • Once separated, uranium needs to be enriched for nuclear fuel Natural U is 0.7 % 235U • Different enrichment needs 3.5 % 235U for light water reactors > 90 % 235U for submarine reactors 235U enrichment below 10 % cannot be used for a device Critical mass decreases with increased enrichment 20 % 235U critical mass for reflected device around 100 kg Low enriched/high enriched uranium boundary 16 Uranium enrichment • Exploit different nuclear properties between U isotopes to achieve enrichment Mass Size Shape Nuclear magnetic moment Angular momentum • Massed based separations utilize volatile UF6 UF6 formed from reaction of U compounds with F2 at elevated temperature • Colorless, volatile solid at room temperature Density is 5.1 g/mL Sublimes at normal atmosphere Vapor pressure of 100 torr One atmosphere at 56.5 ºC • Oh point group U-F bond distance of 2.00 Å 17 Uranium Hexafluoride • Very low viscosity 7 mPoise Water =8.9 mPoise Useful property for enrichment • Self diffusion of 1.9E-5 cm2/s • Reacts with water UF6 + 2H2O UO2F2 + 4HF • Also reactive with some metals • Does not react with Ni, Cu and Al Material made from these elements need for enrichment 18 Uranium Enrichment: Electromagnetic Separation • Volatile U gas ionized Atomic ions with charge +1 produced • Ions accelerated in potential of kV Provides equal kinetic energies Overcomes large distribution based on thermal energies • Ion in a magnetic field has circular path m cv r Radius (r) qB m mass, v velocity, q ion charge, B magnetic field 2Vq • For V acceleration potential v m r c 2Vm B q 19 Uranium Enrichment: Electromagnetic Separation • Radius of an ion is proportional to square root of mass c 2Vm r Higher mass, larger radius B q • Requirements for electromagnetic separation process Low beam intensities High intensities have beam spreading * Around 0.5 cm for 50 cm radius Limits rate of production Low ion efficiency Loss of material • Caltrons used during Manhattan project 20 Calutron • Developed by Ernest Lawrence Cal. U-tron • High energy use Iraqi Calutrons required about 1.5 MW each 90 total • Manhattan Project Alpha 4.67 m magnet 15% enrichment Some issues with heat from beams Shimming of magnetic fields to increase yield Beta Use alpha output as feed * High recovery 21 Gaseous Diffusion • High proportion of world’s enriched U 95 % in 1978 40 % in 2003 • Separation based on thermal equilibrium All molecules in a gas mixture have same average kinetic energy lighter molecules have a higher velocity at 2 2 same energy m352 v352 m349 v349 * Ek=1/2 mv2 v349 m352 352 1.00429 • For 235UF6 and 238UF6 v352 m349 349 235UF6 and is 0.429 % faster on average why would UCl6 be much more complicated 22 for enrichment? Gaseous Diffusion • • 235UF 6 impacts barrier more often Barrier properties Resistant to corrosion by UF6 Ni and Al2O3 Hole diameter smaller than mean free path Prevent gas collision within barrier Permit permeability at low gas pressure Thin material • Film type barrier Pores created in non-porous membrane Dissolution or etching • Aggregate barrier Pores are voids formed between particles in sintered barrier • Composite barrier from film and aggregate 23 Gaseous Diffusion • Barrier usually in tubes UF6 introduced • Gas control Heater, cooler, compressor • Gas seals • Operate at temperature above 70 °C and pressures below 0.5 atmosphere • R=relative isotopic abundance (N235/N238) • Quantifying behavior of an enrichment cell q=Rproduct /Rtail Ideal barrier, Rproduct =Rtail(352/349)1/2; q= 1.00429 24 Gaseous Diffusion • Small enrichment in any given cell q=1.00429 is best condition (qobserved 1) e B (qideal 1) Real barrier efficiency (eB) eB can be used to determine total barrier area for a given enrichment eB = 0.7 is an industry standard Can be influenced by conditions Pressure increase, mean free path decrease Increase in collision probability in pore Increase in temperature leads to increase velocity Increase UF6 reactivity • Normal operation about 50 % of feed diffuses • Gas compression releases heat that requires cooling Large source of energy consumption • Optimization of cells within cascades influences behavior of 234U q=1.00573 (352/348)1/2 Higher amounts of 234U, characteristic of feed 25 Gaseous Diffusion • Simple cascade Wasteful process High enrichment at end discarded • Countercurrent Equal atoms condition, product enrichment equal to tails depletion • Asymmetric countercurrent Introduction of tails or product into nonconsecutive stage Bundle cells into stages, decrease cells at higher enrichment 26 Gaseous Diffusion • Number of cells in each stage and balance of tails and product need to be considered • Stages can be added to achieve changes in tailing depletion Generally small levels of tails and product removed • Separative work unit (SWU) Energy expended as a function of amount of U processed and enriched degree per kg 3 % 235U 3.8 SWU for 0.25 % tails 5.0 SWU for 0.15 % tails • Determination of SWU P product mass W waste mass F feedstock mass xW waste assay xP product assay xF feedstock assay 27 Gas centrifuge • Centrifuge pushes heavier 238UF6 against wall with center having more 235UF6 Heavier gas collected near top • Density related to UF6 pressure Density minimum at center p(r ) e p(0) mw 2 r 2 2 RT m molecular mass, r radius and w angular velocity • With different masses for the isotopes, p can be solved for each isotope p x (r ) e p(0) mxw 2 r 2 2 RT 28 Gas Centrifuge • Total pressure is from partial pressure of each isotope Partial pressure related to mass • Single stage separation (q) Increase with mass difference, angular velocity, and radius • For 10 cm r and 1000 Hz, for UF6 q=1.26 Gas distribution in centrifuge qe ( m2 m1 )w 2 r 2 2 RT 29 Gas Centrifuge • More complicated setup than diffusion Acceleration pressures, 4E5 atmosphere from previous example High speed requires balance Limit resonance frequencies High speed induces stress on materials Need high tensile strength * alloys of aluminum or titanium * maraging steel Heat treated martensitic steel * composites reinforced by certain glass, 30 aramid, or carbon fibers • • • • Gas extracted from center post with 3 concentric tubes Product removed by top scoop Tails removed by bottom scoop Feed introduced in center Mass load limitations UF6 needs to be in the gas phase Low center pressure 3.6E-4 atm for r = 10 cm Superior stage enrichment when compared to gaseous diffusion Less power need compared to gaseous diffusion 1000 MWe needs 120 K SWU/year * Gas diffusion 9000 MJ/SWU * centrifuge 180 MJ/SWU Newer installations compare to diffusion Tend to have no non-natural U isotopes Gas Centrifuge 31 Laser Isotope Separation • Isotopic effect in atomic spectroscopy Mass, shape, nuclear spin • Observed in visible part of spectra • Mass difference in IR region • Effect is small compared to transition energies 1 in 1E5 for U species • Use laser to tune to exact transition specie Produces molecule in excited state • Doppler limitations with method Movement of molecules during excitation • Signature from 234/238 ratio, both depleted 32 Laser Isotope Separation • 3 classes of laser isotope separations Photochemical Reaction of excited state molecule Atomic photoionization Ionization of excited state molecule Photodissociation Dissociation of excited state molecule • AVLIS Atomic vapor laser isotope separation • MLIS Molecular laser isotope separation 33 Laser isotope separation • AVLIS U metal vapor High reactivity, high temperature Uses electron beam to produce vapor from metal sample • Ionization potential 6.2 eV • Multiple step ionization 238U absorption peak 502.74 nm 235U absorption peak 502.73 nm • Deflection of ionized U by electromagnetic field 34 Laser Isotope Separation • MLIS (LANL method) SILEX (Separation of Isotopes by Laser Excitation) in Australia Absorption by UF6 Initial IR excitation at 16 micron 235UF6 in excited state Selective excitation of 235UF6 Ionization to 235UF5 Formation of solid UF5 (laser snow) Solid enriched and use as feed to another excitation 35