Thyristor Converters or Controlled Converters The controlled rectifier circuit is divided into three main circuits:Power Circuit Control Circuit Triggering circuit The commutation of thyristor.
Download ReportTranscript Thyristor Converters or Controlled Converters The controlled rectifier circuit is divided into three main circuits:Power Circuit Control Circuit Triggering circuit The commutation of thyristor.
Thyristor Converters or Controlled Converters The controlled rectifier circuit is divided into three main circuits:Power Circuit Control Circuit Triggering circuit The commutation of thyristor is Natural Commutation Forced Commutation Half Wave Single Phase Controlled Rectifier With Resistive Load Vdc Vm Vm 1 Vm sin(t ) dt ( cos cos( )) (1 cos ) 2 2 2 Vdm Vm / Vn Vdc / Vm 0.5 (1 cos ) Vrms 1 Vm 1 sin(2 ) 2 Vm sin( t ) d t 2 2 2 Example 1 In the rectifier shown in Fig.3.1 it has a load of R=15 and, Vs=220 sin 314 t and unity transformer ratio. If it is required to obtain an average output voltage of 70% of the maximum possible output voltage, calculate:- (a) The firing angle, (b) The efficiency, (c) Ripple factor (d) Peak inverse voltage (PIV) of the thyristor Vdc Vn 0.5 (1 cos ) 0.7 Vdm Vdc 49.02 Vm I dc 3.268 A Vdc 0.7 * Vdm 0.7 * 49.02 V R 15 Vm 1 sin( 2 ) o =66.42 , Vrms=95.1217V Vrms 2 2 , Irms=95.122/15=6.34145A Pdc Vdc * I dc 49.02 * 3.268 26.56% Pac Vrms * I rms 95.121 * 6.34145 Vrms 95.121 FF 1.94 Vdc 49.02 2 2 Vac RF FF 2 1 1.942 1 1.6624 Vdc The PIV is Vm Half Wave Single Phase Controlled Rectifier With RL Load Fig.3.4 Half wave single phase controlled rectifier with RL load. Single-Phase Center Tap Controlled Rectifier With Resistive Load b a Fig.3.8 Center tap controlled rectifier with resistive load. Vdc 1 Vm sin( t ) d t Vm ( cos cos( )) Vm (1 cos ) Vdc Vn 0.5 (1 cos ) Vdm Vrms Vm sin( t ) 1 2 Vm d t 2 sin( 2 ) 2 Example 4 The rectifier shown in Fig.3.8 has load of R=15 and, Vs=220 sin 314 t and unity transformer ratio. If it is required to obtain an average output voltage of 70 % of the maximum possible output voltage, calculate:- (a) The delay angle, (b) The efficiency, (c) The ripple factor (d) The peak inverse voltage (PIV) of the thyristor. Vdc Vn 0.5 (1 cos ) 0.7 Vdm then, =66.42o Vm 220 , then, Vdc 0.7 *Vdm 0.7 * 2 Vm Vm Vdc 98.04 I dc 6.536 A Vrms R 15 2 98.04 V sin( 2 ) 2 at =66.42o Vrms=134.638 V. Then, Irms=134.638/15=8.976 A Pdc V *I 98.04 * 6.536 dc dc 53.04% Pac Vrms * I rms 134.638* 8.976 Vrms 134.638 FF 1.3733 Vdc 98.04 Vac 2 2 RF FF 1 1.3733 1 0.9413 Vdc The PIV is 2 Vm Single-Phase Fully Controlled Rectifier Bridge With Resistive Load Fig.3.11 Single-phase fully controlled rectifier bridge with resistive load. Vdc 1 Vm sin( t ) d t Vm cos cos( ) Vm (1 cos ) Vn Vdc / Vdm 0.5 (1 cos ) Vrms Vm sin( t ) 1 2 Vm d t 2 sin( 2 ) 2 Example 5 The rectifier shown in Fig.3.11 has load of R=15 and, Vs=220 sin 314 t and unity transformer ratio. If it is required to obtain an average output voltage of 70% of the maximum possible output voltage, calculate:- (a) The delay angle , (b) The efficiency, (c) Ripple factor of output voltage(d) The peak inverse voltage (PIV) of one thyristor. Vdc Vn 0.5 (1 cos ) 0.7 , then, =66.42o Vdm Vm 220 , then, Vdc 0.7 *Vdm 0.7 * 2 Vm 98.04 V Vdc 98.04 I dc 6.536 A R 15 Vm sin( 2 ) Vrms 2 2 =66.42o Vrms=134.638 V. Then, Irms=134.638/15=8.976 A Pdc Vdc * I dc 98.04 * 6.536 53.04% Pac Vrms * I rms 134.638* 8.976 Vrms 134.638 FF 1.3733 Vdc 98.04 Vac 2 2 RF FF 1 1.3733 1 0.9413 Vdc The PIV is Vm Full Wave Fully Controlled Rectifier With RL Load In Continuous Conduction Mode Fig.3.14 Full wave fully controlled rectifier with RL load. Full Wave Fully Controlled Rectifier With pure DC Load i(t ) 4 Io 1 1 1 1 * (sin t sin 3t sin 5t sin 7t sin 9t ..........) 3 5 7 9 Vdc 1 Vm sin(t ) dt 2Vm cos Vn Vdc / Vdm cos Vrms 1 Vm sin( t ) 2 Vm d t 2 Vm (1 cos(2 t ) d t 2 Example 6 The rectifier shown in Fig.3.14 has pure DC load current of 50 A and, Vs=220 sin 314 t and unity transformer ratio. If it is required to obtain an average output voltage of 70% of the maximum possible output voltage, calculate:- (a) The delay angle , (b) The efficiency, (c) Ripple factor (d) The peak inverse voltage (PIV) of the thyristor and (e) Input displacement factor. Vdc Vn cos 0.7 Vdm then, =45.5731o= 0.7954 Vm 220 , Vdc 0.7 *Vdm 0.7 * 2 Vm / 98.04 V , Vrms Vm / 2 At =45.5731 Vrms=155.563 V. Then, Irms=50 A o Pdc Vdc * I dc 98.04 * 50 63.02% Pac Vrms * I rms 155.563* 50 Vrms 155.563 The PIV is Vm FF 1.587 Vdc 98.04 Vac RF FF 2 1 1.37332 1 1.23195 Vdc Input displacement factor. cos 0.7 Single Phase Full Wave Fully Controlled Rectifier With Source Inductance 2Ls u cos cos Vm 1 Vrd 4 Ls I o 4 fLs I o 2 Vdc actual Vdc without sourceinductan ce Vrd 2Vm 8I o u u I S1 * sin Is 2 2 u 2 3 I s1 u p. f cos Is 2 2 2I o cos 4 fLs I o Inverter Mode Of Operation Fig.3.25 Single phase SCR inverter. Fig.3.27 SCR inverter with a DC voltage source. Ed Vd Vdo cos 2 Ls I d Three Phase Half Wave Controlled Rectifier with Resistive Load Fig.3.31 Three phase half wave controlled rectifier. 30 30 3 Vdc 2 5 / 6 3 3 Vm Vm sin t d t 2 cos 0.827Vm cos / 6 3 VLL cos 0.675VLL cos 2 I dc 3 3 Vm 0.827 * Vm cos cos 2 * *R R Vrms I rms 3 2 3 Vm R 5 / 6 Vm sin t 2 d t 3 Vm / 6 1 3 cos 2 6 8 Ir IS 1 3 cos 2 6 8 I rms Vm R 3 1 3 cos 2 6 8 > 30 > 30 3 3 Vm Vdc V sin t d t 1 cos 0 . 4775 V 1 cos m m 2 / 6 2 6 6 I dc 3 Vm 1 cos 2 R 6 Vrms 3 5 1 2 Vm sin t d t 3 Vm sin( / 3 2 ) 2 / 6 24 4 8 3 Vm I rms R Ir IS 5 1 sin( / 3 2 ) 24 4 8 I rms Vm R 3 5 1 sin( / 3 2 ) 24 4 8 Example 7 Three-phase half-wave controlled rectfier is connected to 380 V three phase supply via delta-way 380/460V transformer. The load of the rectfier is pure resistance of 5 . The delay angle 25o . Calculate: The rectfication effeciency (b) PIV of thyristors 3 3 VLL cos 460cos 25 281.5V 2 2 Vdc 281.5 I dc 56.3 A 1 3 R 5 Vdc Vrms 2 VLL * 6 8 cos 2 1 3 2 * 460 * cos 2 * 25 298.8 V 6 8 I rms Vrms 298.8 59.76 A R 5 Vdc I dc *100 88.75% Vrms I rms Example 8 Solve the previous example (evample 7) if the firing angle 60o 2 * 460 3 3 3 Vm Vdc 1 cos 1 cos 179.33 V 2 2 6 6 3 I dc Vdc 179.33 35.87 A R 5 From (3.65) we can calculate Vrms as following: Vrms 3 Vm 5 1 sin( / 3 2 ) 230V 24 4 8 Vrms 230 I rms 46 A R 5 Vdc I dc *100 60.79 % Vrms I rms PIV 2 VLL 2 * 460 650.54 V Three Phase Half Wave Controlled Rectifier With DC Load Current Fig.3.36 Three Phase Half Wave Controlled Rectifier With DC Load Current t=0 bn 2 2 / 3 0 I dc sin(n t ) d t 2 I dc 2n 1 cos n 3 2 I dc 3 Then, bn * n 2 And bn 0 for n=1,2,4,5,7,8,10,….. For n=3,6,9,12 3I dc 1 1 1 1 i p (t ) sin t sin 2t sin 4t sin 5t sin 7t ...... 2 4 5 7 3I dc I 2p I 2p1 2 I p1 THD I * I p dc 2 I 2p1 3 THD 2 2 9 2 I dc I dc 2 3 2 68 % 9 2 I 2 dc 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 THD .... 68 % 2 4 5 7 8 10 11 13 14 Example 9 Three phase half wave controlled rectfier is connected to 380 V three phase supply via delta-way 380/460V transformer. The load of the rectfier draws 100 A pure DC current. The delay angle, 30 o . Calculate: (a) THD of primary current. (b) Input power factor. 460 the peak value of primary current is 100 * 121.05 A . 380 2 I P, rms 121.05 * 98.84 A 3 3I dc 3 *121.05 I P1 81.74 A 2 2 THD I P 2 2 I P, rms 98 . 84 1 *100 1 *100 67.98 % 81.74 I P1 81.74 P. f * cos * cos 0.414 Lagging I P, rms 6 98.84 6 6 I P1 Three Phase Full Wave Fully Controlled Rectifier With Resistive Load 60 o Vdc 3 / 2 / 6 Vdm 3 Vm sin( t ) d t 6 3 3 Vm 3 3 Vm cos / 2 2 Vrms 3 Vm sin( t ) d t 3 Vm 6 / 6 3 1 3 3 cos 2 2 4 60o Vdc 3 5 / 6 / 6 3 Vm sin( t ) d t 6 3 3 Vm 1 cos / 3 Vdm Vrms 3 3 Vm 5 / 6 Vdc Vn 1 cos / 3 Vdm 3 3 V sin( t ) d t 3 V 1 2 cos 2 m m / 6 6 4 6 3 2 Example 10 Three-phase full-wave controlled rectifier is connected to 380 V, 50 Hz supply to feed a load of 10 pure resistance. If it is required to get 400 V DC output voltage, calculate the following: (a) The firing angle, (b) The rectfication effeciency (c) PIV of the thyristors. 3 3 Vm 3 3 2 Vdc cos * * 380 cos 400V . R 3 Vdc 400 o Then 38.79 , I dc 40 A R 10 From (3.84) the rms value of the output voltage is: Vrms 3 Vm 1 3 3 cos 2 412.412 V 4 2 Vrms 412.412 Then, Vrms 412.412 V Then, I rms 41.24 A R 10 Vdc * I dc 400 * 40 Then, *100 *100 94.07% Vrms * I rms 412.4 * 41.24 The PIV= 3 Vm=537.4V Example 11 Solve the previous example if the required dc voltage is 150V. Solution: From (3.81) the average voltage is : 3 3* Vdc 2 * 380 3 1 cos / 3 150V 73o t is not acceptable result because the above equation valid only for 60 . Then we have to use the (3.85) to get 3 3* Vdc 3 3 Vm I dc Vdc 150 15 A R 10 cos 2 * 380 3 cos 150V 75.05o From (3.88) the rms value of the output voltage is: Vrms 3Vm 1 I rms 3 2 * 380 * 2 cos 2 3 * 4 6 3 Vrms 198.075 19.8075 A R 10 The PIV= 3 Vm=537.4V 3 1 cos 2* 75.05 30 2 * 75.05 * 180 4 Vdc * I dc 150*15 *100 *100 57.35 % Vrms * I rms 198.075*19.81 Vrms 198.075 V Three Phase Full Wave Fully Controlled Rectifier With pure DC Load Current > 60o 1 2 LS I o u cos cos VLL Vdc actual Vdc without sourceinductan ce Vrd 2 I o2 u IS 3 6 I S1 u pf cos IS 2 I S1 2 6 Io u sin u 2 3 2 VLL cos 6 fLs I o 2 6 Io u sin u 2 u 2 3 * sin u u 2 cos cos 2 2 2 u 2I o u u 3 6 3 6 Inverter Mode of Operation