Seismic Performance Evaluation of Energy Efficient Structural Insulated Panels (SIPs) Using Hybrid Simulation and Cyclic Testing SELIM GÜNAY, POSTDOCTORAL RESEARCHER KHALID MOSALAM, PROFESSOR, PROJECT PI SHAKHZOD.

Download Report

Transcript Seismic Performance Evaluation of Energy Efficient Structural Insulated Panels (SIPs) Using Hybrid Simulation and Cyclic Testing SELIM GÜNAY, POSTDOCTORAL RESEARCHER KHALID MOSALAM, PROFESSOR, PROJECT PI SHAKHZOD.

Seismic Performance Evaluation of
Energy Efficient Structural Insulated
Panels (SIPs) Using Hybrid Simulation
and Cyclic Testing
SELIM GÜNAY, POSTDOCTORAL RESEARCHER
KHALID MOSALAM, PROFESSOR, PROJECT PI
SHAKHZOD TAKHIROV, SITE OPERATIONS MANAGER
nees@berkeley
QUAKE SUMMIT 2012, Boston, July 12, 2012
Introduction
• Structural Insulated Panels (SIPs) are composite panels
for energy efficient construction
• Composed of an energy-efficient core placed in between
facing materials
• Their application in seismically hazardous regions is limited
due to unacceptable performance as demonstrated by
cyclic testing
• Limited number of tests with more realistic dynamic loading
regimes
• Hybrid simulation is ideal to test SIPs with a variety of
structural configurations and ground motion excitations
QUAKE SUMMIT 2012, Boston, July 12, 2012
2
Test Setup
Loading Steel Tube
Reconfigurable
Reaction Wall
Actuator
Specimen
Gravity Loading
Support beam
QUAKE SUMMIT 2012, Boston, July 12, 2012
3
Test Setup
QUAKE SUMMIT 2012, Boston, July 12, 2012
4
Test Setup and Specimen
QUAKE SUMMIT 2012, Boston, July 12, 2012
5
Test Specimen
7/16” OSB Skins
QUAKE SUMMIT 2012, Boston, July 12, 2012
3-5/8” EPS
Insulating Foam
6
Instrumentation
Tube
sliding
Top gap opening
Top
vertical
sliding
Bottom gap opening
Bottom
vertical
sliding
Left
Uplift
Right
Uplift
QUAKE SUMMIT 2012, Boston, July 12, 2012
7
Test Matrix
Specimen
Protocol
Gravity Nail spacing [in]
Remarks
S1
CUREE
No
6
Conventional wood panel
S2
CUREE
No
6
-
S3
CUREE
Yes
6
-
S4
HS
Yes
6
Near-fault pulse-type GM
S5
HS
Yes
3
Near-fault pulse-type GM
S6
CUREE
Yes
3
-
S7
HS
Yes
3
S8
HS
Yes
3
Long duration, harmonic GM
Near-fault GM; 3 stories computational
substructure
1. Compare the responses of conventional wood panel vs SIPs
2. Investigate the effects of
•
•
•
A parameter related to the design and construction of panels: Nail spacing
Parameters related to loading
 Presence of gravity loading
 Lateral loading: CUREE protocol vs HS
 Type of ground motion (Pulse type vs Long duration, harmonic)
A parameter related to HS: presence of an analytical substructure
QUAKE SUMMIT 2012, Boston, July 12, 2012
8
Hybrid Simulation
Specimens S4, S5, S7
c
m
Specimen
m (kip-sec2/in)
ξ
k (kip/in)
c (kip-sec/in)
T (sec)
S4
0.0325
0.05
18
0.0076
0.27
S5
0.0325
0.05
32
0.0102
0.20
S7
0.0325
0.05
32
0.0102
0.20
QUAKE SUMMIT 2012, Boston, July 12, 2012
9
Hybrid Simulation
Specimen S8
force-displacement
relation from
previous tests
m
m
m
m
c=αm
c=αm
c=αm
u3
Analytical
DOF
u2
u1
c=αm
QUAKE SUMMIT 2012, Boston, July 12, 2012
Experimental
DOF
10
Hybrid Simulation: Numerical Integration
• Explicit Newmark Integration with γ=0.5
• Does not require iterations
• Does not require knowledge of initial experimental stiffness
Specimen
m
S4
k
T (sec)
dt (sec)
dt/T
0.0325 18
0.27
0.005
0.018 ≤ 1/π
S5
0.0325 32
0.20
0.005
0.025 ≤ 1/π
S7
0.0325 32
0.20
0.0125
0.0625 ≤ 1/π
S8
-
T4=0.10
0.005
0.05 ≤ 1/π
-
QUAKE SUMMIT 2012, Boston, July 12, 2012
11
Hybrid Simulation: Ground Motions
Los Gatos, Loma Prieta, 1989
Vinadel Mar, Chile, 1985
0
0
-0.4
-0.5
-0.8
0
10
20
30
Vel (in/sec)
20
0
25
50
PGV = 20.0 in/s
100
0
-10
-10
0
10
20
PGV = 11.9 in/s
10
0
30
-20
0
25
50
75
100
5
5
PGD = 3.87 in
PGD = 4.53 in
0
-5
75
20
10
-20
PGA = 0.54 g
0.5
Long duration, harmonic GM
Acc (g)
PGA = 0.61 g
0.4
Disp (in/sec)
Near fault, pulse-type GM
0.8
0
0
10
20
Time (sec)
30
-5
0
25
50
75
Time (sec)
QUAKE SUMMIT 2012, Boston, July 12, 2012
100
12
Test Results: Global Parameters
10
10
Full-History
Envelope
6
6
4
4
Force [kip]
Force [kip]
8
2
0
-4
-6
-6
•
•
•
•
-2
-1
0
1
2
Displacement [inch]
3
Initial stiffness =fi /di
Force capacity = fc
Ductility =du/dy
Hysteretic energy =  fdx
4
5
d,f
i
i
c
c
d , 0.75f
u
c
dp, fp
d ,f
-4
-3
d ,f
y y
0
-2
-4
d ,f
2
-2
-8
-5
envelope
8
-8
-5
n
-4
n
-3
-2
-1
0
1
2
Displacement [inch]
3
4
5
• Positive peak displacement = dp
• Negative peak displacement = dn
• Residual displacement
QUAKE SUMMIT 2012, Boston, July 12, 2012
13
Test Results: Local Parameters
Peaks of local responses
Tube2x6
sliding
Tube
sliding
Top
Displ
Top
vertical
Top
Vertical
Displ
Top
ver. disp
sliding
Top
horizontal gap
Top
TopHorizontal
hor. disp Displ
opening
Bottom
vertical
Bottom
Vertical
Displ
Bottom
ver.
disp
BottomLeft
Right
2x6
Displ
Leftuplift
uplift
sliding
Bottom
left 2x6 Displ
Right
uplift
Right uplift
Bottom
horizontal
Bottom Horizontal
hor.
disp Displ
gap opening
QUAKE SUMMIT 2012, Boston, July 12, 2012
14
Test Results: Comparison of Conventional
Wood Panel and SIPs (S1 vs S2)
Conventional Wood
Frame (S1)
SIPs (S2)
• 7/16’’ OSB Skin on both sides
• 3-5/8” EPS Insulating Foam
• Panel to panel thermal connections
• Double 2x4’’ studs @ 96’’
• 6’’ nail spacing
•
•
•
•
7/16” OSB Skin on both sides
2x4’’ studs @ 16’’
Double 2x4’’ studs @ the ends
6’’ nail spacing
Cyclic Testing with CUREE protocol
QUAKE SUMMIT 2012, Boston, July 12, 2012
15
Test Results: Comparison of Conventional
Wood Panel and SIPs (S1 vs S2)
20
15
20
S1 (Conventional wood panel)
S2 (SIPs)
15 b) Effect of
10 gravity loading
Force [kips]
10
5
5
0
0
-5
-5
-10
-10
-15
-15
-20
-6
-3
0
3
Displacement [inch]
15
46.2
12.2
12.2
11.4
0
Ductility
7.0
3.6
-5
Hysteretic Energy [kip-in]
201.8
193.1
-10
5
0
-5
-10
-15
-3
0
3
20
S2
15Initial Stiffness [kip/in]
c) Effect of
loading
type [kip]
10 Force
Capacity
Force [kips]
-20
-6
S1
20
Specimen
6
S
S
10
d) Effect of
nail spacing
5
S
S
-15
QUAKE SUMMIT 2012, Boston,
2012
-20
S3 July 12,
S4
-6
-3
0
3
16
Test Results: Comparison of Conventional
Wood Panel and SIPs (S1 vs S2)
Heat transfer analysis using THERM 6.3:
A software developed at Lawrence Berkeley National Laboratory for
modeling and analyzing heat-transfer effects in building components
S1
S1
(Conventional
wood)
Double
2x4 studs
S2
S2
(SIPs)
EPS
OSB
OSB
cavity
Interior
Temp:
69.8 F
S2
S2
Double
2x4 studs
2x4 studs
@ 16
Exterior
Temp:
-0.4 F
S1
S1
OSB
Exterior
Temp:
-0.4 F
Interior
Temp:
69.8 F
R-factor: 3.49
QUAKE SUMMIT 2012, Boston, July 12, 2012
14.10
17
Test Results: Effect of Gravity Loading (S2 vs S3)
No gravity loading (S2)
Gravity loading (S3)
Cyclic Testing with CUREE protocol
QUAKE SUMMIT 2012, Boston, July 12, 2012
18
6
3
4
Test Results: Effect of Gravity Loading (S2 vs S3)
20
Force [kips]
15
10
Specimen
S2
S3
5
Initial Stiffness [kip/in]
12.2
23.4
0
Force Capacity [kip]
11.4
9.5
-5
Ductility
3.6
3.5
Hysteretic Energy [kip-in]
193.1
189.2
-10
S2 (No gravity)
S3 (Gravity)
-15
-20
-6
-3
0
3
Displacement [inch]
6
20
d) Effect of
Bottom ver.
15 nail spacing
Specimen
sliding
10
S2
0.71
5
S3
0.49
0
Bottom gap
opening
Top ver.
Sliding
Top gap
opening
Uplift
right
Uplift
left
Tube
sliding
0.04
0.73
0.27
0.02
0.02
0.02
0.01
0.50
0.14
0.03
0.02
0.03
* All units in inches
-5
-10
-15
QUAKE SUMMITS4
2012, Boston, July 12, 2012
S5
19
Test Results: Effect of Nail Spacing (S4 vs S5)
Nail Spacing: 6”(S4)
Nail Spacing: 3”(S5)
3”
6”
Hybrid Simulation with Pulse-type GM
QUAKE SUMMIT 2012, Boston, July 12, 2012
20
-10
1
2
5
6
7
-15
-20
-6
6
S2
S3
Test Results: Effect of Nail Spacing (S4 vs S5)
-3
0
3
6
20
Force [kips]
15
10
Specimen
S4
S5
5
Initial Stiffness [kip/in]
22.9
35.5
0
Force Capacity [kip]
8.6
15.6
-5
Ductility
2.5
3.7
Hysteretic Energy [kip-in]
152.7
363.1
-10
S4 (6" nail spc.)
S5 (3" nail spc.)
-15
-20
-6
20
-3
0
3
Displacement [inch]
6
S4
S5
S4
S5
10
f) Effect of
Specimen
analytical
substructuring
Peak Disp. (+)
2.7
1.3
4.7
3.5
-
5.8
5
Peak Disp. (-)
-2.8
-1.0
-
-3.2
-
-
0
Residual Disp.
1.5
0.1
-
0.8
-
-
15
DE
MCE
1.5MCE
S4
S5
-5
-10
-15
QUAKE SUMMITS5
2012, Boston, July 12, 2012
21
Test Results: Effect of Nail Spacing (S3 vs S6)
Nail Spacing: 6”(S3)
Nail Spacing: 3”(S6)
3”
6”
Cyclic Testing with CUREE protocol
QUAKE SUMMIT 2012, Boston, July 12, 2012
22
F
-5
-5
0
-10
-10
Test Results:
of Nail Spacing (S3
-15 Effect
-15 vs S6)
-10
0
S1
-20 -15
S2 -6
-20
-6
206
3
0
3
6
-5
0
3
Displacement [inch]
15
10
-20 -20-6
-6
d) Effect of
nail spacing
-10
S3
S4 (6" nail spc.)
S6
S5 (3" nail spc.)
-3
-3
0
0
3
Displacement [inch]
Displacement [inch]
f) Effect of
Specimen
analytical
substructuring
3
-15
-20
-6
6
6
20
S3
S6
15
Initial
10 Stiffness [kip/in]
23.4
32.7
10
5
Force
Capacity [kip]
e)0Effect of
Ductility
loading
and
-5
ground Energy [kip-in]
Hysteretic
-10
motion
type
9.5
16.2
3.5
4.8
189.2
309.9
15
0
5
-5
-15
-3
20
-5
-15
6
6
0
20
rce [kips]
-3
3
0
-10
S5
S6
S7
0
-20
-6
5
-10
Effect of
ding and
ound
tion type
-3
3
10
Force [kips]
Force [kips]
S3
S4
0
0
15
10
5
-3
S2
S3 6
20
15
Effect of
ding type
S1
S2
-15
QUAKE SUMMIT 2012, Boston, July 12, 2012
-20
S5
S8
Force [kips]
-3
-5
-3
0
S5 (No analytic
S8 (Analytical s
5
0
-5
-10
-15
23
Test Results: Effect of Lateral Loading (S6 vs S7)
Cyclic Testing with
CUREE Protocol for
Ordinary GM (S6)
Hybrid Simulation with
Long Duration, Harmonic
GM (S7)
Los Gatos, Loma Prieta, 1989
4
2
0
-0.4
-0.8
1
0
10
20
30
-1
-2
0
-10
-3
-20
-4
5
0
500
1000
1500
2000
Time [sec]
PGV = 20.0 in/s
10
0
10
20
0
-5
0
3000
3500
10
20
Time (sec)
30
Nail spacing: 3”
Vinadel Mar, C
PG
0.5
0
-0.5
2510
50 20 75
30
100
0
25
50
20
PGV
PGV==20.0
11.9in/s
in/s
10
10
0
-10
-10
-10
2510
50 20 75
30
100
PG
10
00
-20
-20
00
55
30
PGD = 4.53 in
2500
-0.4
-0.5
-0.8
00
20
20
Vel (in/sec)
0
PGA= =0.61
0.54g g
PGA
00
Disp (in/sec)
Vel (in/sec)
20
Disp (in/sec)
Displacement [inch]
3
0.8
0.5
0.4
PGA = 0.61 g
0.4
Acc (g)
Acc (g)
5
-5
Los Vinadel
Gatos, Loma
Mar, Chile,
Prieta,1985
1989
0.8
-20
0
25
50
5
PGD == 4.53
3.87 in
in
PGD
00
-5-5
00
PG
0
2510
50 20 75
Time
Time(sec)
(sec)
QUAKE SUMMIT 2012, Boston, July 12, 2012
30
100
-5
0
25
50
Time (s
24
-10
-10
S3
S4
-15
-15
Test Results: Effect of Lateral
Loading (S6 vs S7)
-20
Force [kips]
-20
-6
-3
0
3
6
-6
20
20
15
15
10
10
-3
0
3
5
5
f) Effect of
analytical
substructuring
Specimen
S6
S7
0
Initial
Stiffness [kip/in]
0
32.7
33.2
-5Force Capacity [kip]
16.2
15.5
Ductility
4.8
3.4
-15
Hysteretic Energy [kip-in]
309.9
-5
-10
-10
S6 (CUREE)
S7 (HS)
-15
-20
-6
-3
0
3
Displacement [inch]
6
Specimen
Peak Disp. (+)
Peak Disp. (-)
Residual Disp.
-20
-6
-3
S6
4.7
-4.7
0.0
QUAKE SUMMIT 2012, Boston, July 12, 2012
S4
S5
6
S5
1077.8
S8
0
3
Displacement [inch]
6
S7
3.3
-4.2
0.3
25
Test Results: Effect of Ground Motion Type (S5 vs S7)
Hybrid Simulation with Long
Duration, Harmonic GM (S7)
Vinadel
1989
Vinadel Mar, Chile, 1985
Los Gatos, Loma Prieta,
1989 Mar, Chile, 1985
Gatos, Loma Prieta,
Los
0.8
0.8
PGA
PGA = 0.54 g
= 0.61 g
PGA
PGA
0.5 = 0.61 g
0.5= 0.54 g
0.4
0.4
Acc (g)
Acc (g)
Hybrid Simulation with
Pulse-Type GM (S5)
0
-0.4
-0.8
0
10
10
0
-10
-20
0
0
-0.4
-0.5
-0.5
-0.8
3010
200
20
PGV = 20.0 in/s
10
10
0
0
020
075
25 30 50
20
PGV = 20.0 in/s
10
0
0
-10
-10
-10
0
-5
200
10
Time (sec)
-20
020
25 30 50
5
PGD = 4.53 in
0
100
25
20
PGV = 11.9 in/s
10
0
-20
3010
200
5
PGD = 4.53 in
Disp (in/sec)
Disp (in/sec)
5
-5
0
Vel (in/sec)
Vel (in/sec)
20
0
-20
075
100
25
5
PGD = 3.87 in
50
75
100
PGV = 11.9 in/s
50
75
100
PGD = 3.87 in
0
-5
-5
25 30 50
020
3010
075
(sec)
Time 3”
(sec)
Time
Nail
spacing:
QUAKE SUMMIT 2012, Boston, July 12, 2012
100
75
50
25
Time (sec)
100
26
-10
-10
S3
S4
S4
S5
Test Results: Effect of Ground Motion Type (S5 vs S7)
-15
Force [kips]
-20
-6
-3
0
3
-15
6
-20
-6
20
20
15
15
10
10
-3
0
3
f) Effect of
Specimen
analytical
substructuring
6
S5
S7
5
5 Initial Stiffness [kip/in]
35.5
33.2
0
0 Force Capacity [kip]
15.6
15.5
Ductility
3.7
3.4
Hysteretic Energy [kip-in]
363.1
1077.8
S5
-5
-5
-10
-10
S5 (Pulse-type)
S7 (Harmonic)
-15
-20
-6
-3
0
3
Displacement [inch]
Specimen
-15
6
S8
-20
-6
DE
-3
0
3
Displacement [inch]
MCE
6
1.5MCE
Peak Disp. (+)
S5
1.3
S7
1.1
S5
3.5
S7
2.2
S5
5.8
S7
3.3
Peak Disp. (-)
-1.0
-1.0
-3.2
-2.0
-
-4.2
Residual Disp.
0.1
0.0
0.8
0.0
-
0.3
QUAKE SUMMIT 2012, Boston, July 12, 2012
27
-10
-10
S3
S4
S4
S5
Test Results: Effect of Ground Motion Type (S5 vs S7)
-15
-20
-6
-3
0
3
-15
6
20
20
15
15
-3
0
f) Effect of
10 analytical
DE
Specimen
substructuring
S5
S7
5
10
Force [kips]
-20
-6
3
MCE
6
1.5MCE
0
Peak
0 Disp. (+)
1.3
1.1
S5
3.5
-5
Peak
-5 Disp. (-)
-1.0
-1.0
-3.2
-2.0
-
-4.2
Residual Disp.
0.1
0.0
0.8
0.0
-
0.3
5
-10
-10
S5 (Pulse-type)
S7 (Harmonic)
-15
-20
-6
-3
Specimen
DE
MCE
S5
S7
S5
S7
0
3
Displacement [inch]
Bottom ver.
sliding
0.26
0.23
0.63
0.45
Bottom gap
opening
0.02
0.02
0.05
0.03
S7
2.2
S5
5.8
S7
3.3
S5
S8
-15
6
-20
-6
-3
Top ver.
sliding
0.27
0.21
0.64
0.43
Top gap
opening
0.03
0.02
0.09
0.04
0
3
Displacement [inch]
QUAKE SUMMIT 2012, Boston, July 12, 2012
Uplift
right
0.08
0.15
0.14
0.53
Uplift
left
0.07
0.04
0.12
0.09
6
Tube
sliding
0.18
0.02
0.19
0.06
28
Test Results: Effect of Analytical
Substructuring (S5 vs S8)
Hybrid Simulation with no
Analytical Substructure (S5)
Hybrid Simulation with
Analytical Substructure (S8)
m
m
c
m
m
m
c=αm
c=αm
c=αm
u3
Analytical
DOF
u2
u1
c=αm
Experimental
DOF
Pulse-type GM
QUAKE SUMMIT 2012, Boston, July 12, 2012
29
6
Test Results: Effect of Analytical
Substructuring (S5 vs S8)
S3
S4
6
S5 (No analytical substructure)
S8 (Analytical substructure)
Specimen
S5
S8
15
Initial Stiffness [kip/in]
35.5
38.3
10
Force Capacity [kip]
15.6
16.0
Ductility
3.7
4.0
Force [kips]
20
5
0
-5
Specimen
-10
-15
-20
-6
-3
0
3
Displacement [inch]
Specimen
DE
MCE
S5
S8
S5
S8
Bottom ver.
sliding
0.26
0.37
0.63
0.65
6
Bottom gap
opening
0.02
0.03
0.05
0.03
DE
MCE
Peak Disp. (+)
S5
1.3
S8
1.2
S5
3.5
S8
2.4
Peak Disp. (-)
-1.0
-1.7
-3.2
-3.1
Residual Disp.
0.1
0.0
0.8
0.4
Top ver.
sliding
0.27
0.37
0.64
0.55
Top gap
opening
0.03
0.04
0.09
0.05
QUAKE SUMMIT 2012, Boston, July 12, 2012
Uplift
right
0.08
0.09
0.14
0.16
Uplift
left
0.07
0.11
0.12
0.27
Tube
sliding
0.18
0.13
0.19
0.14
30
Concluding Remarks
• Finite
element
heat
transfer
analyses
quantitatively show the thermal insulation
efficiency of SIPs compared to conventional wood
panels.
• Effect of nail spacing is significant on the structural
performance of SIPs.
QUAKE SUMMIT 2012, Boston, July 12, 2012
31
Concluding Remarks
• Hybrid simulation provides the force-deformation
envelope that can also be gathered from a cyclic
test. But it also provides response values, where
the cyclic test would require complimentary
analytical simulations to get the response values.
• Although the global and local responses of SIPs with
and without analytical substructuring are not
dramatically different, there is a need for analytical
substructuring for a more realistic representation.
QUAKE SUMMIT 2012, Boston, July 12, 2012
32
Thank you
QUAKE SUMMIT 2012, Boston, July 12, 2012
33