Constraints on the Density dependence of Symmetry Energy in Heavy Ion Reactions 5th ANL/MSU/JINA/I NT FRIB Workshop on S(r) Bulk Nuclear Properties Nov 19-22, 2008 MSU Betty Tsang The National Superconducting Cyclotron Laboratory Michigan.

Download Report

Transcript Constraints on the Density dependence of Symmetry Energy in Heavy Ion Reactions 5th ANL/MSU/JINA/I NT FRIB Workshop on S(r) Bulk Nuclear Properties Nov 19-22, 2008 MSU Betty Tsang The National Superconducting Cyclotron Laboratory Michigan.

Constraints on the Density dependence of
Symmetry Energy in Heavy Ion Reactions
5th
ANL/MSU/JINA/I
NT FRIB
Workshop on
S(r)
Bulk Nuclear
Properties
Nov 19-22, 2008
MSU
Betty Tsang
The National Superconducting
Cyclotron Laboratory
Michigan State University
Extracting Density dependence of Symmetry
Energy in Heavy Ion Reactions
F1
F3
Outline:
What does HIC have to
offer?
What are the pitfalls (in
theory)?
What constraints do we
have now? (Are the constraints
believable or reliable?)
What research directions
are we going towards
FRIB?
Extracting Density dependence of Symmetry
Energy in Heavy Ion Reactions
F1
F3
Micha Kilburn
HIC provides a range of density determined
from incident energy and impact parameter
Bulk nuclear matter properties from Heavy Ion Central Collisions
E/A=1600 MeV
200 MeV
50 MeV
Highest density reached by
central collisions depends
on incident beam energy.
Pions, n, p
fragments
Types of particles formed depend
on emission times and density.
Danielewicz, Lacey, Lynch, Science 298,1592 (2002)
pressure
contours
density
contours
•
Experiment: measure collective flow (emission patterns) of particles emitted
in Au+Au collisions from (E/A~1-8 GeV).
•
Transport model (BUU) relates the measurements to pressure and density.
Equation of State of Nuclear Matter
E/A(r,) = E/A(r,0) + 2S(r) ;  = (rn- rp)/ (rn+ rp) = (N-Z)/A
Danielewicz, Lacey, Lynch, Science 298,1592 (2002)
symmetric matter
-3
P (MeV/fm )
100
10
RMF:NL3
Akmal
Fermi gas
Flow Exp.
1
1
1.5
2
2.5
3
r/r
3.5
0
4
4.5
5
Equation of State of Nuclear Matter
E/A(r,) = E/A(r,0) + 2S(r) ;  = (rn- rp)/ (rn+ rp) = (N-Z)/A
??
Danielewicz, Lacey, Lynch, Science 298,1592 (2002)
symmetric matter
•Newer calculation and
experiment are consistent with
the constraints.
•Transport model includes
constraints in momentum
dependence of the mean field
and NN cross-sections
-3
P (MeV/fm )
100
RMF:NL3
Akmal
Fermi gas
Flow Experiment
Kaons Experiment
FSU Au
10
1
1
1.5
2
2.5
3
r/r
3.5
0
4
4.5
5
Experimental Techniques to probe the symmetry energy with
heavy ion collisions at E/A<100 MeV
Isospin degree of freedom
Z ( Z  1)
B  aV A  aS A    aC
A1/ 3
2
( A  2Z )
 a sym
A
Proton Number Z
2/ 3
• Vary the N/Z compositions
of projectile and targets
124Sn+124Sn, 124Sn+112Sn,
112Sn+124Sn, 112Sn+112Sn
• Measure N/Z compositions
of emitted particles
n & p
 isotopes
 p+ & p- at higher incident
energy
Neutron Number N
Hubble ST
Crab Pulsar
Heavy Ion collision: 124Sn+124Sn, E/A=50 MeV
Around incident energy: E/A<100 MeV:
Reaction mechanism depends on impact
parameters
n & p are emitted throughout
b=0 fm
multifragmentation
b=7 fm
Neck fragments
Charged fragments (Z=3-20) are formed at
subnormal density
gi
Esym=12.7(r/ro)2/3 + 19(r/ro)
Classes of models used to interpret experimental results
I. Transport models:
Describe dynamical evolution of the
collision process
•Self consistent mean field
•n-n collisions,
•Pauli exclusion
Uncertainties
Semi-classical
Approximations needed to make
computation feasible.
II. Statistical models:
Describe longer time scale decays
from single source.
•nuclear mass,
•level densities,
•decay rates
Uncertainties
Source parameters: Ao, Zo, Eo, Vo, J
Information obtained is for finite
nuclei, not for infinite nuclear matter
Symmetry energy included in the
nuclear EOS for infinite nuclear
matter at various density from
the beginning of collision.
Symmetry energy included in the form
of fragment masses – finite nuclei &
valid for ro only. EOS extrapolated
using statistical model is questionable.
Theory must predict how reaction evolves from initial
contact to final observables
Experimental Observable : Isospin Diffusion
Isospin diffusion occurs only
in asymmetric systems A+B
No isospin diffusion between
symmetric systems
--Isospin Transport Ratio
124
112
124
R =1
112
124
Ri = -1
112
i
Non-isospin diffusion effects
same for A in A+B & A+A ;same for B in B+A & B+B
Non-isospin transport effects are “cancelled”??
x AB  ( x AA  xBB ) / 2
Ri  2
x AA  xBB
Rami et al., PRL, 84, 1120 (2000)
xAB, yAB experimental or
theoretical observable for AB
yAB= a xAB+b
Ri(xAB )= Ri(yAB )
Experimental Observable :
Isospin Diffusion
 Probe the symmetry energy at
subsaturation densities in
peripheral collisions, e.g.
124Sn + 112Sn
 Isospin “diffuse” through
low-density neck region
x AB  ( x AA  xBB ) / 2
Ri  2
x AA  xBB
Projectile
124Sn
Target
112Sn
stiff
x(calc)=
Symmetry energy drives system
towards equilibrium.
•stiff EOS  small diffusion; |Ri|>>0
•soft EOS  fast equilibrium; Ri0
soft
Constraints from Isospin Diffusion Dataof
calculation!
g
pBUU: S=12.7(r/ro)2/3 + 12.5 (r/ro) i
gi ~2
IBUU04 : S~31.6(r/ro)g
0.69g 1.05
stiffness
stiffness
M.B. Tsang et. al., PRL 92, 062701 (2004)
L.W. Chen, … B.A. Li, PRL 94, 032701 (2005)
Observable in HIC is sensitive to r dependence of S
and should provide constraints to symmetry energy
Experimental Observables: n/p yield ratios
Li et al., PRL 78 (1997) 1644
100
F2
F1
=0.3 stiff
F3
50
S=12.7(r/ro)2/3 + 17.6(r/ro)gi
soft
Neutron
Proton
0
ImQMD
-50
Y(n)/Y(p)
(MeV)
UVasyasy(MeV)
•n and p potentials have
opposite sign.
•n & p energy spectra depend
on the symmetry energy 
softer density dependence
emits more neutrons.
F1=2u2/(1+u)
F2=u
F3=u
-100
0
0.5
1
u = r / ro
1.5
2
•More n’s are emitted from the nrich system and softer iso-EOS.
n/p Double Ratios (central collisions)
Double Ratio
124Sn+124Sn;Y(n)/Y(p)
112Sn+112Sn;Y(n)/Y(p)
minimize
systematic errors
Will repeat
experiment for
better accuracy
Data : Famiano et al. PRL 97 (2006) 052701
n/p Double Ratios (central collisions)
112Sn+112Sn;Y(n)/Y(p)
minimize
systematic errors
Double Ratio
Double Ratio
124Sn+124Sn;Y(n)/Y(p)
Center of mass Energy
Famiano et al. RPL 97 (2006) 052701
•Effect is much larger
than IBUU04
predictions 
inconsistent with
conclusions from
isospin diffusion data.
Nuclear Collisions simulations with Transport Models
– Nuclear EOS included from beginning of collisions
BUU models:
Semiclassical solution of onebody distribution function.
Pros
Derivable, approximations
better understood.
Cons
Mean field no fluctuations
BUU does not predict cluster
formation
QMD:
Molecular dynamics with
Pauli blocking.
Pros
Predicts cluster production
Cons
Cluster properties (masses,
level densities) approximate
Need sequential decay codes
to de-excite the hot fragments
Code used: ImQMD
At high incident energies, cluster production is weak
 the two models yield the same results.
Clusters are important in low energy collisions.
Cluster effects
Cluster effects
are important
for low energy
nucleons but
cannot explain
the large
discrepancy
between data
and IBUU04
calculations
Analysis of n/p ratios with ImQMD model
g
Esym=12.5(r/ro)2/3 + 17.6 (r/ro)i
0.4gi 1.05
Data need better measurements but the trends and
magnitudes still give meaningful 2 analysis at 2 level
Analysis of isospin diffusion data with ImQMD model
x AB  ( x AA  xBB ) / 2
Ri  2
x AA  xBB
S=12.5(r/ro)2/3 +
gi
17.6 (r/ro)
x(data)=a
x(QMD)=
Equilibrium
Ri=0
0.4gi 1
No diffusion
Ri =1; Ri =-1
b~5.8 – 7.2 fm
Impact parameter is not well determined in the experiment
Analysis of rapidity dependence of Ri with ImQMD model
x AB  ( x AA  xBB ) / 2
Ri  2
x AA  xBB
S=12.5(r/ro)2/3 +
17.6 (r/ro)
x(data)
=f(7Li/7Be)
x(QMD)=
Equilibrium
Ri=0
0.4gi 1
No diffusion
Ri =1; Ri =-1
gi
b~5.8 – 7.2 fm
New analysis on rapidity dependence of isospin diffusion ratios – not
possible with BUU type of simulations due to lack of fragments.
For the first time, we have a transport model that describes
np ratios and two isospin diffusion measurements
0.4gi 1.05
0.4gi 1
0.45gi 0.95
Consistent constraints from the 2 analysis of three observables
S=12.5(r/ro)2/3 +
gi
17.6 (r/ro)
0.4gi 1
How to connect different representations of the symmetry energy
IBUU04 : S~31.6(r/ro)g
approximation
0.69g 1.05
g
S=12.5(r/ro)2/3 + 17.6 (r/ro) i
IBUU04
IQMD
Expansion around r0:
slope L & curvature Ksym
L  r  r0
S  S o   B
3  r0
 K sym
 
 18
 r B  r0

 r0
S~31.6(r/ro)
LSymmetry pressure Psym
2

  ...

L  3r 0
Esym
r B

r B  r0
3
r0
Psym
g
g
S=12.5(r/ro)2/3 + 17.6 (r/ro) i
S~31.6(r/ro)
Rnp=0.04 fm
IBUU04
IQMD
L  r  r0
S  S o   B
3  r0
 K sym
 
 18
 r B  r0

 r0
2

  ...

L  3r 0
Esym
r B

r B  r0
3
r0
Psym
g
g
S=12.5(r/ro)2/3 + Cs,p(r/ro) i
Vary Cs,p and gi
2 2 analysis
No constraints on So
L  r  r0
S  S o   B
3  r0
 K sym
 
 18
 r B  r0

 r0
2

  ...

L  3r 0
Esym
r B

r B  r0
3
r0
Psym
g
Esym=12.5(r/ro)2/3 + Cs,p(r/ro) i
Constraints from masses and
Pygmy Dipole Resonances
E sym
L  r  r0
 S o   B
3  r0
 K sym
 
 18
 r B  r0

 r0
2

  ...

L  3r 0
Esym
r B

r B  r0
3
r0
Psym
g
Esym=12.5(r/ro)2/3 + Cs,p(r/ro) i
Constraints from masses and
Pygmy Dipole Resonances
E sym
L  r  r0
 S o   B
3  r0
 K sym
 
 18
 r B  r0

 r0
2

  ...

L  3r 0
Esym
r B

r B  r0
3
r0
Psym
g
Esym=12.5(r/ro)2/3 + Cs,p(r/ro) i
Current constraints on
symmetry energy from HIC
E sym
L  r  r0
 S o   B
3  r0
 K sym
 
 18
 r B  r0

 r0
2

  ...

L  3r 0
Esym
r B

r B  r0
3
r0
Psym
Constraints on the density
dependence of symmetry energy
?
FRIB
Au+Au
No constraints
between r0 and 2 r0
Outlook
2020?
FRIB
FAIR
Precision measurements in FRIB
Outlook
FRIB
MSU
FAIR
MSU (2009-2012) : E/A<100 MeV measure isospin diffusion, fragments,
residues, p,n spectra ratios and differential flow  improve constraints on S(r),
m*, nn, pp, np at r<ro
MSU (~2013) : E/A>120 MeV  measure p+, p- spectra ratios constraints at
ro< r<1.7ro -- Bickley
Outlook
FRIB
MSU
?
GSI
FAIR
GSI (2011) : E/A~400 – 800 MeV measure p,n spectra ratios and differential
flow  determine constraints S(r), m*, nn, pp, np at 2.5ro< r<3ro
Lemmon, Russotto et al, experimental proposal to GSI PAC
Outlook
Riken
FRIB
MSU
?
GSI
FAIR
Riken (2013-2017) : E/A=200-300 MeV measure p+, p- spectra ratios, p,n, t/3He
spectra ratios and differential flow  determine S(r), m*, nn, pp, np at r~2ro
Riken (2011) : E/A>50 MeV  measure isospin diffusions for fragments and
residues  determine S(r) at r<2ro. 108Sn+112,124Sn – RI beam used to increase .
Detectors needed:
n detectors: NSCL/pre-FRIB; GSI; RIBF/Riken
Pions/kaons & p, t, 3He detectors: TPC
NSCL Dual purpose AT-TPC: proposal to be submitted to DOE
RIBF TPC: SUMARAI magnet funded, TPC – Japan-US
collaboration: proposal to be submitted to DOE.
AT-TPC: FRIB
~ 1.2 M
TPC ~ 0.78 M
Travel: 0.37 M
Summary
The density dependence of the symmetry energy is of fundamental
importance to nuclear physics and neutron star physics.
Observables in HI collisions provide unique opportunities to probe
the symmetry energy over a range of density especially for dense
asymmetric matter
Calculations suggest a number of promising observables that can
probe the density dependence of the symmetry energy.
–Isospin diffusion, isotope ratios, and n/p spectral ratios provide
some constraints at rr0, -- refinement in constraints foreseen in
near future with improvement in calculations and experiments at
MSU, GANIL & Riken
– p+ vs. p- production, n/p, t/3He spectra and differential flows
may provide constraints at r2r0 and above, MSU, GSI, Riken
The availability of intense fast rare isotope beams at a variety of
energies at RIKEN, FRIB & FAIR allows increased precisions in
probing the symmetry energy at a range of densities.
Acknowledgements
Y.X. Zhang (ImQMD), P. Danielewicz, M. Famiano,
W.A. Friedman, W.G. Lynch, L.J. Shi, Jenny Lee,
Experimenters
Michigan State University
T.X. Liu (thesis), W.G. Lynch, Z.Y. Sun, W.P.
Tan, G. Verde, A. Wagner, H.S. Xu
L.G. Sobotka, R.J. Charity (WU)
R. deSouza, V. E. Viola (IU)
M. Famiano: (Westen Michigan U)
NSCL Transport simulation group
Brent Barker, Abby Bickley, Dan Coupland, Krista Cruse, Pawel
Danielewicz, Micha Kilburn, Bill Lynch, Michelle Mosby, Scott Pratt,
Andrew Steiner, Josh Vredevooqd, Mike Youngs, YingXun Zhang
How to connect different symmetry energy representations
50
Expansion around r0:
Symmetry slope L &
curvature Ksym
Total Symmetry Energy
40
E
sym
(MeV)
Esym
30
L  r  r 0  K sym

 a4   B
3  r 0  18
 r B  r0 


r
0


2
Symmetry pressure Psym
L  3r 0
g =0.5
20
Esym
r B

r B  r0
3
r0
Psym
i
g =2.0
i
FSU GOLD
AV18
skm*
NL3
10
0
0
0.2
0.4
0.6
0.8
r/r0
1
1.2
1.4
Value of symmetry
energy at saturation
Esym ( r0 )  a4
Riken Samurai TPC
Density region sampled
depends on collision
observable & beam
energy
• r>r0 examples:
– Pion energy spectra
– Pion production ratios
– Isotopic spectra
– Isotopic flow
– With NSCL beams, densities
up to 1.7 0 are accessible
– Beams: 50-150 MeV,
50,000pps
106Sn-126Sn, 37Ca-49Ca
Riken Samurai TPC
Density region sampled
depends on collision
observable & beam
energy
• r>r0 examples:
– Pion energy spectra
– Pion production ratios
– Isotopic spectra
– Isotopic flow
– With NSCL beams, densities
up to 1.7 0 are accessible
– Beams: 50-150 MeV,
50,000pps
106Sn-126Sn, 37Ca-49Ca
Projectile
Isospin Diffusion
124Sn
No diffusion
Target
112Sn
from isoscaling
Complete mixing
from Y(7Li)/Y(7Be)
Laboratory experiments to study properties of neutron stars
r/r0
ye
T(MeV)
n-star
HI
collisions
~ 0.1 - 10
~ 0.1-5
~0.1
~1
~0.38-0.5
~ 4-50
Extrapolate information from
limited asymmetry and
temperature to neutron stars!
Laboratory experiments to study properties of neutron stars
208Pb
extrapolation from 208Pb radius to n-star radius
N/Z ratios from bound fragments (Z=3-8)
 complementary to n/p ratios
Effects are
small
Hot fragments
produced in
calculations.
EC.M.
P
Esym=12.7(r/ro)2/3 + 19(r/ro)gi
T
N/Z ratios from bound fragments (Z=3-8)
 complementary to n/p ratios
Sequential
decay effects
are important
Data consistent
with soft EOS
P
Esym=12.7(r/ro)2/3 + 19(r/ro)gi
T
Experimental Observables to probe the symmetry energy
E/A(r,) = E/A(r,0) + 2S(r) ;  = (rn- rp)/ (rn+ rp) = (N-Z)/A
• Collision systems: 124Sn+124Sn, 124Sn+112Sn, 112Sn+124Sn, 112Sn+112Sn
• E/A=50 MeV
• Low densities (r<r0):
– n/p spectra and flows; Y(n)/Y(p), Y(t)/Y(3He),
– Fragment isotopic distributions,
• Isoscaling: interpretation with statistical model is incorrect
• <N>/<Z> of Z=3-8 fragments
• Isospin diffusion
– Correlation function, C(q)
– Neutron, proton radii, E1 collective modes.
• High densities (r2r0)
– Neutron/proton spectra and flows; C(q)
– p+ vs. p- production, k, hyperon production.
Exploring Bulk properties of Nuclear Matter with Heavy Ion Collisions
asystiff
asysoft
Low density/energy
High density/energy
Tsang, HW
• fragments, ratios
• differential flow
QF Li, Di Toro
BA Li, HW
• isospin diffusion
• n/p, LIF ratios
Di Toro, Lukasic
Tsang
• isoscaling
• pions ratios
DiToro, Reisdorf, QF Li
Di Toro
• migration/fractionat.
• kaon ratios
Prassa, QF Li
Aumann, Ducoin
• collective excitations
• neutron stars
Danielewicz
• surface phenomena
Lehaut
• phase transitions
BA Li, Kubis
Hermann Wolter
Constraints from Isospin Diffusion Data
x=-1
124Sn+112Sn
data
x=0
x=1(soft)
x=-2
Data:
IBUU04:
•Collisions of
Sn+Sn isotopes
at E/A=50 MeV
Collisions of
Sn+Sn isotopes
at E/A=50 MeV
•b/bmax>0.8
<b>~7.2 fm
from
multiplicity
gates.
b=6 fm
•y/yb>0.7
•Results
obtained with
clusters
Projectile-like
residue
determined from
density &
y/yb>0.5
No clusters
Isospin diffusion in the projectile-like region
Basic ideas:
• Peripheral reactions
• Asymmetric collisions
124Sn+112Sn, 112Sn+124Sn
-- diffusion
• Symmetric Collisions
124Sn+124Sn, 112Sn+112Sn
-- no diffusion
• Relative change between
target and projectile is the
diffusion effect
Projectile
Target
Density region sampled
depends on collision
observable & beam
energy
• r>r0 examples:
– Pion energy spectra
– Pion production ratios
– Isotopic spectra
– Isotopic flow
– With NSCL beams, densities
up to 1.7 0 are accessible
– Beams: 50-150 MeV,
50,000pps
106Sn-126Sn, 37Ca-49Ca
30
Isospin Dependence of the
Nuclear Equation Neutron
of State
matter EOS
PAL: Prakash et al., PRL 61, (1988) 2518.
forPhys.
Asymmetric
Matter
ColonnaEOS
et al.,
Rev. C57,
(1998) 1410.
Soft (=0, K=200 MeV)
asy-soft, =1/3 (Colonna)
asy-stiff, =1/3 (PAL)
=(r -r )/(r +r )
20
E/A (MeV)
Brown, Phys. Rev. Lett. 85, 5296 (2001)
10
n
p
n
p
0
-10
-20
0
0.1
0.2
0.3
0.4
0.5
0.6
r (fm )
-3
E/A (r,) = E/A (r,0) +
2S(r)
 = (rn- rp)/ (r
n+ rp) = (N2  E / A )
P  r Z)/A
r
s/a
• The density dependence of
symmetry energy is largely
unconstrained.
• Pressure, i.e. EOS is rather
uncertain even at r0.
• r<r0 – created in multifragmentation
process
Observables:
– n/p ratios
– Isotopic spectra
– Beams: 50 MeV, 112Sn-124Sn
dailygalaxy.com
Transport description of heavy ion collisions:
non-relativistic: BUU

f
p
 f  U  p f  I coll  f , 
t m
Vlasov eq.; mean field
EOS
3
2-body hard collisions

1
(2p )
3
2
 dp dp dp
2
3
4
v12
gain term
effective mass
Kinetic momentum
Field tensor
mean px(y0) [MeV]
Simulation with Test Particles:
1
f f 2 (1  f 3 )(1  f 4 )
Relativistic BUU
I coll ( f , )
1
2
1
d
 ( p1  p2  p3  p4 )
d 1234
(1  f )(1  f 2 ) f 3 f 4 
loss term
1
4
Analysis of rapidity dependence of Ri with ImQMD model
g
Esym=12.5(r/ro)2/3 + 17.6 (r/ro)i
0.45gi 0.95
New analysis on rapidity dependence of isospin diffusion ratios –
not possible with BUU type of simulations due to lack of fragments.