AMANDA: proof of concept Atmospheric Neutrinos Cosmic Ray e+ +  e  π+ Atmospheric Muons & Neutrinos 102 Hz atm.

Download Report

Transcript AMANDA: proof of concept Atmospheric Neutrinos Cosmic Ray e+ +  e  π+ Atmospheric Muons & Neutrinos 102 Hz atm.

AMANDA: proof of concept
Atmospheric Neutrinos
Cosmic Ray
e+
+

e

π+
Atmospheric Muons & Neutrinos
102 Hz
atm. 
astrophysical 
• “Atmospheric
muons” from cosmic
ray showers,
penetrating to the
detector from above
• “Atmospheric
neutrinos” from the
same air showers,
forming a diffuse
background and
calibration beam
atm. 
10-4 Hz • Astrophysical
neutrinos: interesting
signal
Detector medium: ice to meet you
Scattering
Absorption
bubbles
ice
dust
dust
Measurements:
►in-situ light sources
►atmospheric muons
• Scattering length 6 ~ 52 m
• Absorption length 9 ~ 240 m
Optimized 2002 analysis
zenith distribution
10 events per
day:
•improved reco
•no cuts
10,000 in 00-05
ATMOSPHERIC
Neural Network
energy reconstruction
Regularized unfolding
→ energy spectrum

& DIFFUSE FLUX LIMITS []
AMANDA test beams: atmospheric  and 
First spectrum > 1 TeV (up to 100TeV)
Neutrino fluxes vs. Energy
Neutrino Energy spectrum
Volkova flux
parameterizations
H.Geenen
Previous analysis publication
Phys. Rev. Lett. 90 251101 (2003)
Includes 33% systematic
uncertainty
(GeV)
104
105 E
Last bin info to calculate the limit to
Extraterrestrial E2 neutrino flux
E2μ(E) < 2.58·10–7 GeV cm-2 s-1 sr-1
IceCube
IceCube
Neutrino
Observatory
IceTop
shower array
80 pairs of
Cherenkov tanks
IceCube
4800 optical modules
on 80 strings
Digital Optical Module
Photomultiplier Tube
300 m
size vs threshold
1500 m
50 m
2500 m
South Pole:
AMANDA  IceCube
IceCube 01/05
• drilling 
• 60 modules 
Drill modules at McMurdo
IceTop – IceCube
coincident muon
µ-event in
IceCube
300 atmospheric
neutrinos per
day
AMANDA II
IceCube:
Larger Telescope
Superior Detector
1 km
Event Simulation in IceCube
E = 10 TeV
E = 375 TeV
e

muon event
shower event
~300m for
10 PeV 

double shower event
PeV

(300m)
 
decays
Signatures in IceCube …
1013 eV (10 TeV)
6x1015 eV (6 PeV)
Multi-PeV

B10
+N+...
± (300 m!)
 +hadrons
signature of 
signature of 
GZK event in AMANDA and IceCube
SUPERNOVA SEARCH ’97 + ‘98
AMANDA-B10 with 302 OMs
Selection of very stable OMs
SN Signal proportional
To number of OMs !
AMANDA-II with 677 OMs
AMANDA-II
CRUCIAL = LOW NOISE
215 Days live time; 90% = 9.8 kpc
AMANDA-B10
Count rates
Simulation
(IceCube)
IceCube
30 kpc
0
Astropart.Phys. 16 (2002) 345
70% of Galaxy coverage
sn < 4.3 Event yr-1
5
10 sec
 B-10: 70% of Galaxy
 A-II: 95% of Galaxy
 IceCube: up to LMC
Joined SNEWS (SuperNova Early Warning System)
[with Super-K, SNO, Kamland, LVD, Boone]
neutrinos: the sun and the Earth
Symmetry Magazine
3
1
natural particle beams
• Sun: resolution of solar neutrino puzzle
 ’s have mass
 John Bahcall understands how the sun shines
• Supernova 1987A:  20 events only!
 confirmed basic scenario for the death of a star
 set records on neutrino properties
• Cosmic neutrinos? Discovery, but also
 106 atmospheric and  103 supernova neutrinos
 origin of cosmic rays
 beam for particle physics
AMANDA performance
( Antares, Nestor soon )
•’s per day :
•total statistics
3.5  10 per day
10,000 in 00-05
•energy
0.1 ~ 1,000 TeV
IceCube -KM3NET
•’s per day :
> 100 per day
•total statistics
> 106 over 10yr
•energy
0.1 ~ 10,000 TeV
Neutrino Astronomy Explores Higher
Dimensions
atmospheric
range
100 x SM
GZK range
TeV-scale gravity increases PeV -cross section
IceCube
tests
• equivalence
principle
and
• Lorentz
invariance
…general
relativity
will not last
200 years…
M. Turner
Cosmic neutrino beam from the decay of pions
e :  :  ~ 1 : 2 : <10-5
@ the source
e :  :  ~ 1 : 1 : 1
@ the detector
Or,
(maximal   mixing)
• zero mass eigenstates in vacuum
• neutrino decay
• neutrinos of varying mass
cosmic anti - e beam from neutron decay
directional cosmic rays from the Cygnus region and
from the center of the galaxy
e
?
@ the source
@ the detector
•Measure sin2q13 from flavor composition
at the detector
•Decoherence?
WIMP Capture and Annihilation
c

n
DETECT
c+cW+W+
WIMP search
Limits on muon flux from Earth
Limits on muon flux from Sun
AMANDA 1y
SK
Disfavored by
direct search
(CDMS II)
Antares 3 years
1km3 (IceCube)
IceCube : particle physics with
one million atmospheric neutrinos
• Astronomy: new window on the Universe
• Physics:
•
•
•
•
•
•
•
•
measurement of the high-energy neutrino cross section
TeV-scale gravity, quantum decoherence
physics beyond 3-flavor oscillations
test special and general relativity with new precision
search for magnetic monopoles
search for neutralino (or other) dark matter
search for topological defects and cosmological remnants
search for magnetic monopoles
RICE
Radio Detection in South Pole Ice
Neutrino enters ice
Neutrino interacts
Antenna
& Cable
• Installed ~15 antennas
few hundred m depth with
AMANDA strings.
• Tests and data since 1996.
• Most events due to local
radio noise, few candidates.
• Continuing to take data,
and first limits prepared.
• Proposal to Piggyback with
ICECUBE
Cube is .6 km on side
Two cones show 3 dB
signal strength
Antarctic Impulsive Transient Antenna Experiment
ANITA
Solar
panels
Antenna array
Overall height ~8m
ANITA
Gondola &
Payload
RF
Cherenkov
air
searching for GZK
neutrinos with radio
detection in Antarctic ice
solid
neutrino
Cascade: ~10m length
particle astrophysics
• techniques of particle physics reborn to
do astronomy
• not mentioned: CCD development, massive
data handling/analysis techniques …
• cosmic ray puzzle will be solved less than
100 years after their discovery
The real voyage is not to travel to new landscapes,
but to see with new eyes. . .
Marcel Proust
conclusions
• techniques of particle physics reborn to
do astronomy
• may still do particle physics (  mass ! )
• cosmic ray puzzle will be solved less than
100 years after their discovery