Lecture #40 OUTLINE The MOSFET: • Velocity saturation Reading: Chapter 19.1 Spring 2007 EE130 Lecture 40, Slide 1
Download ReportTranscript Lecture #40 OUTLINE The MOSFET: • Velocity saturation Reading: Chapter 19.1 Spring 2007 EE130 Lecture 40, Slide 1
Lecture #40 OUTLINE The MOSFET: • Velocity saturation Reading: Chapter 19.1 Spring 2007 EE130 Lecture 40, Slide 1 Velocity Saturation Velocity saturation limits IDSsat in modern MOSFETS Simple model: v e e 1 e sat v vsat for e < e sat for e esat esat is the electric field at velocity saturation: vsat Spring 2007 8 106 cm/s for electrons in Si 6 6 10 cm/s for holesin Si EE130 Lecture 40, Slide 2 e sat 2vsat MOSFET I-V with Velocity Saturation In the linear region: I DS W m Coxe eff VGS VT VDS VDS L 2 VDS 1 e sat L I DS Spring 2007 long channelI DS VDS 1 e sat L EE130 Lecture 40, Slide 3 Drain Saturation Voltage VDSsat 1 VDSsat m 1 VGS VT e sat L e sat • If esatL >> VGS-VT then the MOSFET is considered “long-channel”. This condition can be satisfied when – L is large, or – VGS is close to VT Spring 2007 EE130 Lecture 40, Slide 4 2vsat EXAMPLE: Drain Saturation Voltage Question: For VGS = 1.8 V, find the VDSsat of an NFET with Toxe = 3 nm, VT = 0.25 V, and WT = 45 nm, if L = (a) 10 m, (b) 1 um, (c) 0.1 m, and (d) 0.05 m Solution: From VGS , VT, and Toxe , n is 200 cm2V-1s-1. esat= 2vsat / n = 8 104 V/cm m = 1 + 3Toxe/WT = 1.2 VDSsat Spring 2007 m 1 VGS VT e sat L EE130 Lecture 40, Slide 5 1 VDSsat m 1 VGS VT e sat L 1 (a) L = 10 m: VDSsat= (1/1.3V + 1/80V)-1 = 1.3 V (b) L = 1 m: VDSsat= (1/1.3V + 1/8V)-1 = 1.1 V (c) L = 0.1 m: VDSsat= (1/1.3V + 1/.8V)-1 = 0.5 V (d) L = 0.05 m: VDSsat= (1/1.3V + 1/.4V)-1 = 0.3 V Spring 2007 EE130 Lecture 40, Slide 6 IDSsat with Velocity Saturation Substituting VDSsat for VDS in the linear-region IDS eq’n. gives: I DSsat W 2 Coxe eff VGS VT long channelI DSsat 2 m L VGS VT VGS VT 1 1 e sat L e sat L For very short channel length: I DSsat e sat L VGS VT W W e vsat Coxe VGS VT sat Coxe eff VGS VT 2m m • IDSsat is proportional to VGS–VT rather than (VGS – VT)2 • IDSsat is not dependent on L Spring 2007 EE130 Lecture 40, Slide 7 V gs = 1.0V 0.0 0 1 V ds (V) Short- vs. Long-Channel MOSFET 0.4 L = 0.15 m I ds (mA/m) L = 2.0 m V gs = 2.5V Vt = 0.4 V 2.5 0.03 (b) Vgs = 2.5 V Vt = 0.7 V 0.3 0.02 Ids (A/m) (a) 2 V gs = 2.0V 0.2 V gs = 1.5V 0.1 Vgs = 2.0 V 0.01 Vgs = 1.5 V V gs = 1.0V Vgs = 1.0 V 0.0 0.0 0 1 2 2.5 V ds (V) Short-channel MOSFET: 0.03 • IDsat VVGS-VTn rather than (VGS-VTn)2 Vgsto = 2.5 L =is 2.0 proportional m Vt = 0.7 • VDsat is Vlower than for long-channel MOSFET • Channel-length modulation is apparent 0.02 /m) (b) Vds (V) Spring 2007 Vgs Lecture = 2.0 V 40, Slide 8 EE130 Velocity Overshoot • When L is comparable to or less than the mean free path, some of the electrons travel through the channel without experiencing a single scattering event projectile-like motion (“ballistic transport”) The average velocity of carriers exceeds vsat e.g. 35% for L = 0.12 m NMOSFET Effectively, vsat and esat increase when L is very small Spring 2007 EE130 Lecture 40, Slide 9 Summary: NMOSFET I-V • Linear region: W m Coxe eff ,n VGS VTn VDS VDS L 2 I DS VDS 1 sat L e • Saturation region: W 2 Coxe eff ,n VGS VT I DS I DSsat 2m L VGS VT 1 sat L e Spring 2007 EE130 Lecture 40, Slide 10 e sat 2vsat vsat 8 106 cm/s for electrons in Si PMOSFET I-V with Velocity Saturation • Linear region: W m Coxe eff , p VGS VTp VDS VDS L 2 I DS VDS 1 sat L • Saturation region: W 2 Coxe eff , p VGS VTp I DS I DSsat 2m L VGS VTp 1 sat L e e Spring 2007 EE130 Lecture 40, Slide 11