Results from PAMELA Mirko Boezio INFN Trieste, Italy On behalf of the PAMELA collaboration Indirect and Direct Detection of Dark Matter February 7th 2011
Download ReportTranscript Results from PAMELA Mirko Boezio INFN Trieste, Italy On behalf of the PAMELA collaboration Indirect and Direct Detection of Dark Matter February 7th 2011
Results from PAMELA Mirko Boezio INFN Trieste, Italy On behalf of the PAMELA collaboration Indirect and Direct Detection of Dark Matter February 7th 2011 Isotopic composition [ACE] Solar Modulation [PAMELA,ULYSSES] Antimatter Dark Matter [BESS, PAMELA, AMS] Elemental Composition [CREAM, ATIC, TRACER, NUCLEON, CALET, GAMMA-400?] Extreme Energy CR [AUGER, EUSO, TUS/KLYPVE, OWL??] PAMELA Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics PAMELA Collaboration Italy: Bari Florence Frascati Naples Rome Trieste CNR, Florence Russia: Moscow St. Petersburg Sweden: Germany: Siegen KTH, Stockholm PAMELA Instrument GF ~21.5 cm2sr Mass: 470 kg Size: 130x70x70 cm3 Mirko Boezio, IDDDM, Aspen, 2011/02/07 Design Performance • Antiprotons Energy range 80 MeV - 190 GeV • Positrons 50 MeV – 300 GeV • Electrons • Protons up to 800 GeV up to 1 TeV • Helium up to 400 GeV/n • Electrons+positrons up to 2 TeV ( by calorimeter) • Light Nuclei (Li/Be/B/C) • AntiNuclei search up to 200 GeV/n sensitivity of 3x10-8 in He/He Mirko Boezio, IDDDM, Aspen, 2011/02/07 PAMELA Launch 15/06/06 16 Gigabytes trasmitted daily to Ground NTsOMZ Moscow Orbit Characteristics 350 km SAA 70o 610 km • Low-earth elliptical orbit • 350 – 610 km • Quasi-polar (70o inclination) • SAA crossed Mirko Boezio, IDDDM, Aspen, 2011/02/07 Outer radiation belt Download @orbit 3754 – 15/02/2007 07:35:00 MWT NP SP S1 Inner radiation belt (SSA) orbit 3751 orbit 3752 EQ 95 min orbit 3753 EQ S2 S3 Subcutoff particles Mirko Boezio, IDDDM, Aspen, 2011/02/07 PAMELA milestones Launch from Baikonur June 15th 2006, 0800 UTC. ‘First light’ June 21st 2006, 0300 UTC. • Detectors operated as expected after launch • Different trigger and hardware configurations evaluated PAMELA in continuous data-taking mode since commissioning phase ended on July 11th 2006 Trigger rate* ~25Hz Fraction of live time* ~ 75% Event size (compressed mode) ~5kB 25 Hz x 5 kB/ev ~ 10 GB/day (*outside radiation belts) Main antenna in NTsOMZ Till ~now: ~1400 days of data taking ~20 TByte of raw data downlinked >2x109 triggers recorded and analyzed Scientific goals • Search for dark matter annihilation • Search for antihelium (primordial antimatter) • Search for new Matter in the Universe (Strangelets?) • Study of cosmic-ray propagation (light nuclei and isotopes) • Study of electron spectrum (local sources?) • Study solar physics and solar modulation • Study terrestrial magnetosphere Dark Matter Indirect Detection Mirko Boezio, IDDDM, Aspen, 2011/02/07 DM annihilations DM particles are stable. They can annihilate in pairs. Primary annihilation channels Decay Final states σa= <σv> Particle ID with PAMELA Mirko Boezio, IDDDM, Aspen, 2011/02/07 Flight data: 0.171 GV positron Flight data: 0.169 GV electron Flight data: 0.763 GeV/c antiproton annihilation Antiproton / Positron Identification Time-of-flight: trigger, albedo rejection, mass determination (up to 1 GeV) Bending in spectrometer: sign of charge Ionisation energy loss (dE/dx): magnitude of charge Interaction pattern in calorimeter: electron-like or proton-like, electron energy Antiproton (NB: e-/p ~ 102) Positron (NB: p/e+ ~103-4) Flight data: 14.7 GV Interacting nucleus (Z = 8) Antiproton to proton ratio (0.06 GeV - 180 GeV) Simon et al. (ApJ 499 (1998) 250) Ptuskin et al. (ApJ 642 (2006) 902) Donato et al. (PRL 102 (2009) 071301) PRL 102, 051101 (2009) and PRL. 105, 121101 (2010) Antiproton Flux (0.06 GeV - 180 GeV) Donato et al. (ApJ 563 (2001) 172) Systematics errors included Ptuskin et al. (ApJ 642 (2006) 902) PRL. 105, 121101 (2010) PAMELA trapped antiprotons Antiprotons inside SAA Galactic Antiprotons Antiprotons below cutoff at equator Galactic antiprotons Mirko Boezio, IDDDM, Aspen, 2011/02/07 Positron to Electron Fraction Secondary production Moskalenko & Strong 98 Adriani et al, Astropart. Phys. 34 (2010) 1 arXiv:1001.3522 [astro-ph.HE] A Challenging Puzzle for CR Physics Uncertainties on: • Secondary production (primary fluxes, cross section) • Propagation models • Electron spectrum But antiprotons in CRs are in agreement with secondary production A Challenging Puzzle for CR Physics P.Blasi, PRL 103 (2009) 051104; arXiv:0903.2794 Positrons (and electrons) produced as secondaries in the sources (e.g. SNR) where CRs are accelerated. I. Cholis et al., Phys. Rev. D 80 (2009) 123518; arXiv:0811.3641v1 Contribution from DM annihilation. D. Hooper, P. Blasi, and P. Serpico, JCAP 0901:025,2009; arXiv:0810.1527 Contribution from diffuse mature &nearby young pulsars. A Challenging Puzzle for CR Physics G. Kane, R. Lu, and S. Watson, Phys.Lett.B681, 151 (2009); arXiv:0906.4765 v3 T. Delahaye et al., A&A 501, 821(2009); arXiv: 0809.5268v3 Cosmic Ray Spectra Cosmic-Ray Acceleration and Propagation in the Galaxy Mirko Boezio, IDDDM, Aspen, 2011/02/07 Diffusion Halo Model Mirko Boezio, IDDDM, Aspen, 2011/02/07 PAMELA Proton and Helium Nuclei Spectra Mirko Boezio, IDDDM, Aspen, 2011/02/07 Proton and Helium Nuclei Spectra GALPROP Mirko Boezio, IDDDM, Aspen, 2011/02/07 Proton and Helium Nuclei Spectra Mirko Boezio, IDDDM, Aspen, 2011/02/07 Boron and Carbon nuclei Spectra Carbon Boron Mirko Boezio, IDDDM, Aspen, 2011/02/07 H isotopes separation 0.9 GV < R < 1 GV p d Mirko Boezio, IDDDM, Aspen, 2011/02/07 Positrons detection Where do positrons come from? Mostly locally within 1 Kpc, due to the energy losses by Synchrotron Radiation and Inverse Compton Typical lifetime PAMELA electron (e-) spectrum e- e+ + e- Mirko Boezio, IDDDM, Aspen, 2011/02/07 PAMELA electron (e-) spectrum Tracker based Calorimeter based Mirko Boezio, IDDDM, Aspen, 2011/02/07 Theoretical uncertainties on “standard” positron fraction γ = 3.54 γ = 3.34 Flux=A • E- T. Delahaye et al., arXiv: 0809.5268v3 PAMELA electron (e-) spectrum Flux=A • E- = 3.18 ±0.05 prediction from e- flux Mirko Boezio, IDDDM, Aspen, 2011/02/07 Fit of electron spectrum Independently to the fit of the electron spectra, we also perform a χ2 comparison between the expected positron fraction from GALPROP simulation and PAMELA measurement of the positron fraction. Preliminary electron spectrum Confidence level, in parameter space (2;ϕ0) obtained from a fit of the electron spectra (red) and of the positron fraction (green). Cruces show the best-fit combination. positron fraction Interestingly, the best fit value for the two independent fit are very similar. Mirko Boezio, IDDDM, Aspen, 2011/02/07 Solar Modulation Mirko Boezio, IDDDM, Aspen, 2011/02/07 Positron to Electron Fraction Solar Modulation? Secondary production Moskalenko & Strong 98 Adriani et al, Astropart. Phys. 34 (2010) 1 arXiv:1001.3522 [astro-ph.HE] Solar Modulation of Galactic Cosmic Rays Hermanus NM (4.6 GV) South Africa A<0 A<0 A>0 A>0 A<0 Percentage (100% in May 1965) 100 95 90 85 22-year cycle 77.5 80 1960 1965 1970 1975 1980 1985 1990 Time (Years) Courtesy of M. Potgieter 1995 2000 2005 2010 PAMELA Time Dependence of PAMELA Proton Flux Mirko Boezio, IDDDM, Aspen, 2011/02/07 Time Dependence of PAMELA Proton Flux Mirko Boezio, IDDDM, Aspen, 2011/02/07 Time Dependence of PAMELA Electron (e-) Flux Mirko Boezio, IDDDM, Aspen, 2011/02/07 Time Dependence of PAMELA Electron (e-) Flux Mirko Boezio, IDDDM, Aspen, 2011/02/07 Time Dependence Flux variation as a function of time for rigidities between 0.72 and 1.04 GV Time Dependence Increase of the flux measured by PAMELA from July 2006 to December 2008 PAMELA Electron to Positron Ratio and Theoretical Models Preliminary U.W. Langner, M.S. Potgieter, Advances in Space Research 34 (2004). Summary PAMELA Results PAMELA Data Mirko Boezio, IDDDM, Aspen, 2011/02/07 Summary • PAMELA has been in orbit and studying cosmic rays for ~4.5 years. >109 triggers registered and >19 TB of data has been down-linked. • Antiproton-to-proton flux ratio and antiproton energy spectrum (~100 MeV - ~200 GeV) show no significant deviations from secondary production expectations. • High energy positron fraction (>10 GeV) increases significantly (and unexpectedly!) with energy. Primary source? •The proton and helium nuclei spectra have been measured up to 1.2 TV. The observations challenge the current paradigm of cosmic ray acceleration and propagation. • The e- spectrum up to 600 GeV shows spectral features that may point to additional components. • Analysis ongoing to finalize the antiparticle measurements (positron flux, positron fraction), continuous study of solar modulation effects at low energy. • Waiting for AMS to compare contemporary measurements. Mirko Boezio, IDDDM, Aspen, 2011/02/07 AMS-02 on ISS In Orbit April 2011 TRD Mexico Florida A&M MIT Yale Johns Hopkins Mary land Ciemat-Madrid LIP-Lisbon ETH-Zurich Genev a Univ. Helsinki Turku Kurchatov I nst. Inst. of Theor. & Experim ental Phy sic s Moscow State Univ ercity Achen I & II I Karlsruhe Munich Bucharest Bologna Milano Perugia Pisa Roma Siena IEE, IHEP Jiao Tong Univ ersity Sout heast Univ ersity Korea IHEP Taiwan CSIST NCU Academ ia Sinica NSPO Vacuum Case Tracker RICH He Vessel Annecy Grenoble Mont pellier Aarhus MAGNET ESA NIKHEF NLR, Amsterdam The Completed AMS Detector on ISS Transition Radiation Detector (TRD) Time of Flight Detector (TOF) Magnet Silicon Tracker Ring Image Cerenkov Counter (RICH) Electromagnetic Calorimeter (ECAL) Size: 3m x 3m x 3m Weight: 7 tons AMS-02 new configuration AMS S.C. Magnet: MDR 2.18 TV AMS Perm. Magnet: MDR 2.14 TV AMS Capability Space Part 2006 Mirko Boezio, IDDDM, Aspen, 2011/02/07