Tomohiro OishiA, Kouichi HaginoA, Hiroyuki SagawaB ATohoku Univ., BUniv. of Aizu T.Oishi, K.Hagino, and H.Sagawa, PRC82,024315(2010)
Download ReportTranscript Tomohiro OishiA, Kouichi HaginoA, Hiroyuki SagawaB ATohoku Univ., BUniv. of Aizu T.Oishi, K.Hagino, and H.Sagawa, PRC82,024315(2010)
Tomohiro OishiA, Kouichi HaginoA, Hiroyuki SagawaB ATohoku Univ., BUniv. of Aizu T.Oishi, K.Hagino, and H.Sagawa, PRC82,024315(2010) r2 Dineutron correlation in 2n-Borromean nuclei (theoretically predicted): 6 He 11 Core 12 Li r 1r 2 r1 K.Hagino, and H.Sagawa, PRC72(‘05)044321 Remarkable localization of two neutrons “dineutron correlation”. How about two protons in a weakly bound system? zˆ Typical “2p-Borromean” nucleus; 16 di - proton F 15 17 O p p proton-unbound, p Ne stable for proton emission. 15 O p T(16 F) 1020 [s] (p - emit) p 17Ne is an ideal system to analyze diproton correlation. 17 Ne 15 O p p (1) ( 2) H (r1 , r2 ) TCore T1 T2 VNC (r1 ) VNC (r2 ) VNN (r1 , r2 ) p (1) ( 2) 1 p2 hNC hNC VNN (r1 , r2 ) , AC m Off-diagonal (i ) NC h Core pi2 (i ) VNC (ri ) 2 r2 VNC (r 2 ) 12 VNC (r1) m AC AC 1 VNN (r1, r 2 ) r 1r 2 zˆ r1 VNN (r1, r 2 ) 2 e 1 (N) Vpp (r1 , r2 ) Vpp (r1 , r2 ) 4 0 r1 r2 V (N ) pp v (r1 r2 )v0 1 exp[(r1 R ) a ] OR (N) pp V Explicit Coulomb Density-dependent contact 2 2 v0 exp b0 (r1 r2 ) v1 exp b1 (r1 r2 ) Minnesota Parameters are fixed to output g.s.energy of 17Ne:-0.944 MeV. Woods-Saxon + Coulomb potential for p-Core 1 d 2 VpC (r ) V0 f (r ) r0 Vls ( s ) f (r ) VpC, Clmb (r ) r dr 15 15 3 O 1/2 - p1d 5/2 2 1 O 1/2 p2s1/2 - 0 1.257 (MeV) 0.951 0.722 0.535 1.129 (1d5/2 ) 0.964 (MeV) 12 5 2 0.820 0.675 (2s1/2 ) 3 2 0.344 0 15 15 Op 16 Fixed to reproduce averaged resonance energies F 0 O 2p 12 0.944 17 Ne Note; In actual calculation, 1) We set cutoff-energy:ECUT = 60 MeV. 2) Continium states are discretized by setting infinite wall at RBOX = 30 fm. ~ g.s. (r1, r2 ) nn 'lj nn 'lj (r1, r2 ) n n ' l , j nn 'lj (r1, r2 ) ~ 1 j, m; j,m | 0,0 0+ configuration for g.s. 2( nn' m nljm (r1 )n'lj m (r2 ) n'ljm (r1 )nlj m (r2 ) calculation 1) Determined by Hdiagonalization mean - square N - N distance : rN2 N g .s. | (r1 r2 ) 2 | g .s. mean - square 2N - Core distance : r22N C g .s. | (r1 r2 ) 2 / 4 | g .s. A 2A 1 2 r2 r rN2 N 2 N C 2 A 2 A A2 2( A 2) ( A 2) 2 density : (r1 , r2 ) g .s. (r1 , r2 ) (r1, r2 ,12 ) , (rˆ1 zˆ ) r2 r2 V pp(C ) (N ) V pp 0.14 re - adjust ed cont act, wit hout Vpp( C ) r22N C Core rN2 N r2 r2 A 2 A r2 A 2 A 2A 1 2 r rN2 N 2 N C 2 ( A 2) 2( A 2) (r1 r2 r ,12 ) 4r 2 2r 2 sin 12 17 (r1 r22N C 1/2 zˆ ; z2 , x2 ) , 16 C Ne z2 r2 cos 12 , x2 r2 sin 12 Core r2 z1 zˆ r22N C “Diproton correlation” rN2 N r22N C Core Minnesota Contact We performed three-body-model calculation for 17Ne with two types of pairing plus explicit Coulomb interaction. 1. Coulomb repulsion contributes about 14% reduction to pairing energy. 2. Existence of strong “diproton correlation”. Future work: application to 2p-emission. p [ O p p] 15 n nljm (ri ) Rnlj (ri )ljm (rˆi , ) , ljm (rˆi , ) l , ml ;1 2 , ms | j, m Ylml (rˆi ) ms ms ,ml Woods-Saxon + Coulomb potential for p-Core V pC (r ) VWS (r ) VClmb (r ) 1 d 2 V0 f (r ) r0 Vls ( s ) f (r ) VClmb (r ) r dr 1 r 1 ZC e2 1 f (r ) V ( r ) 3 1 exp[(r RCore ) aCore ] Clmb 4 0 RCore 2 RCore 1 ZC e2 4 0 r 2 ( r RCore ) (r RCore ) Put infinite wall at r=Rbox: Rnlj (r Rbox ) 0 Continuum states are discretized. Resonances of 16F at 0.675 MeV (s1/2) and at 1.129 MeV (d5/2) are reproduced. VNN (r1, r 2 ) e2 1 Vpp (r1 , r2 ) (r1 r2 ) g (r1 ) 4 0 r1 r2 v g (r1 ) v0 1 exp[(r1 R ) a ] We need cutoff:EC to determine v0 (pairing in vacuum). 2 2ann EC m 2 v0 2 , kC m 2kC ann 2 Explicit Coulomb interaction Density-dependent contact interaction ann 18.5 (fm) n 'lj EC , nlj (1) ( 2) Other parameters are fixed to obtain g.s.energy of 17Ne:-0.944 MeV. S.Hilaire et al., Phys.Lett.B531(2002) Pairing gap of protons and neutrons protons neutrons Table of Nuclides , http://atom.kaeri.re.kr/ton/nuc6.html S2p BE( Ne) - BE( O) 0.944 [MeV] 17 15 S2n BE(16 C) - BE(14 C) 5.47 [MeV] VNC (r ) for 16 F and 15 C