“A” students work (without solutions manual) ~ 10 problems/night. Dr. Alanah Fitch Flanner Hall 402 508-3119 [email protected] Office Hours Th&F 2-3:30 pm Module #17C: Buffering and Titrations Holding Proteins intact By.

Download Report

Transcript “A” students work (without solutions manual) ~ 10 problems/night. Dr. Alanah Fitch Flanner Hall 402 508-3119 [email protected] Office Hours Th&F 2-3:30 pm Module #17C: Buffering and Titrations Holding Proteins intact By.

“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
Holding Proteins intact
By pH constant
General
FITCH Rules
G1: Suzuki is Success
G2. Slow me down
G3. Scientific Knowledge is Referential
G4. Watch out for Red Herrings
G5. Chemists are Lazy
 qq 

E  k
C1. It’s all about charge
r r 
C2. Everybody wants to “be like Mike”
 qq 
C3. Size Matters

E  k
r r 
C4. Still Waters Run Deep
Piranhas lurk
C5. Alpha Dogs eat first
1 2
Chemistry
el
1
2
1 2
el
1
2
What pH is best suited
For the hydrogen bond?
Ka ,Val ,COOH  501
. x10 3
Ka,tyr ,ROH  10
. x1010
Hemeglobin
Review Module 17B
Which pH (2, 7, 11) is most favorable for the formation of
a hydrogen bond between Val and tyr in hemoglobin
Ka ,Val ,COOH  501
. x10 3
% dissociated 

100 A
 A  H O

aq ,eq
3
aq ,eq
Ka
% dissociated 
H O
3
Ka,tyr ,ROH  10
. x1010


 A 

aq ,eq

aq ,eq
100
aq ,eq
Ka

1
pH
pH
22
7
11
KaCOOH
KaCOOH Ka ROH
5.00E-03
5.00E-03 1.00E-10
[H+]
%diss
%diss
[H+]
%diss
1.00E-02
1.00E-02 33.33333
33.33333 1E-06
1.00E-07
99.998
0.0999
1.00E-11
100
90.90909
pH2  10 2


100


100
% dissociatedCOOH  
  33.33
% dissociatedCOOH  10  2 2
 10 3  1 
5.01x10  3  1
Review Module 17B
 5.01x10

How does the body maintain
This pH?
http://www.meddean.luc.edu/lumen/MedEd/MEDICINE/pulmonar/physio/pf4.htm
How does the body maintain pH ~7?
Remember it will have to constantly adjust to changes in pH
From an enormous number of chemical reactions!!!
Control is ultimately based on CO2,(g)
Cg  PCO2 k H
Respired (breathed) air PCO2 =0.23 mm Hg
k H  3.4 x10
Pressure increases through mechanics of lung
Aorta PCO2=41.8mmHg
M 
 1atm  
2
42mmCO2 
. x10  3 M
  3.4 x10
  187
 760mm 
L  atm
2

Henry’s law
moles
L  atm

All dissolved CO2 goes to carbonic acid
CO2, g  H2 O 
 H2 CO3aq
Carbonic acid is a weak acid
(anion is high charge density, Oh Card me PleaSe!)
Ka1  4.4 x10 7


H2 CO3,aq  H2 O 
HCO

H
O

3,aq
3 aq
Ka1
HCO  H O 

x10


 H CO   H CO

3,eq
2

x

aq ,eq
3
3,aq ,eq

Ka1 H2 CO3,3,aq ,init 
2
7
 x
3,aq ,init
x2

  x  H CO
. x1033 
4.4x107 187
2
3,aq ,init

8.228x1010  2.86x105
H O   x
3


aq ,eq

p H3Oaq ,eq   log2.86x10  5   4.54
This is too low!!! – we would not have the
Right amount of ionization on the protein
H2 CO3,aq  H2 O

 


Ka1  4.4 x10 7

aq
HCO3,aq  H3O
2

HCO3,aq   H2 O 
CO

H
O

3,aq
3 aq
Ka2  4.7 x10

p H3Oaq ,eq   log2.29 x10  5   4.54
Will the pH get to the “right” value by the second acid
Dissociation reaction?Let’s make an “intelligent” guess
Ka 2
CO  H O  x2.86x10



2
3,eq
 HCO
3

aq ,eq

3,aq ,eq

2.86x10
5
5
 x
 x
2.86x105  xKa2  x2.86x105  x
2.86x105 Ka 2  xKa 2  2.86x105 x  x 2
x
Ka2 
x2.86x10 5 
11
NO, would
Only slightly
Increase acidity
 x  4.7 x10 11
2.86x105 
x 2  286
. x105 x  134
. x1015  0
 2.86 x10  5 
. x10 15 
2.86x10 5  2  4 134
2
 2.86x10 5  81796
.
x10 10  5.36x10 15
x
2
x 2  2.86x105 x  2.86x105 Ka 2  xKa 2  0
 2.86 x10  5  2.8600093x10  5
x
2
2
5
5
x  2.86x10  Ka 2 x  2.86x10 Ka 2  0
9.37 x10 11
11
2
5
11
5
11
x


4
.
68
x
10
x  2.86x10  4.7x10 x  2.86x10 4.7x10  0
2




H2 CO3,aq  H2 O 
HCO

H
O

3,aq
3 aq
Ka1  4.4 x10
7
Will the pH get to the “right” value by the second acid

5
p
H
O


log
2
.
29
x
10

  4.54
3
aq
,
eq
Dissociation reaction?


HCO3,aq  H2 O

 
CO3,aq
2

Ka2  4.7 x10

aq
 H3 O
To tweak blood pH to 7.4
red blood cells (RBC)
control [HCO3-]
RBC
HCO 

3 aq ,eq
blood
 4.0x10 2 M
11


H2 CO3,aq  H2 O 
HCO

H
O

3,aq
3 aq
H CO 
2
3,aq
CO2 , g
HCO 

3 aq ,eq
Ka1


 187
. x10 M

 2.4 x10 2 M

H 2 CO3,aq ,eq



 H CO
2
3,aq ,eq

pH  pKa1  log

 HCO3,eq
RBC
HCO3,eq H 3 Oaq ,eq


 H CO
2
3,aq ,eq

pH   log Ka1  log

 HCO3,eq
3



Ka1  4.4 x10 7
H CO


K
 H O


pH   log4.4x10   log 00779
.
 HCO 
pH  6.35    1108
.   7.45
H CO


 H O   K  HCO 
Value can be controlled


H
CO



by red blood cell
pH   log H O    log K

 HCO  

a1
3
3,aq ,eq
3

3,eq

aq ,eq
2
a1
3

aq ,eq
7
3,aq ,eq

3,eq

aq ,eq





 187
. x10  3 
pH   log4.4 x10   log
2 
 2.4 x10 
7
2

2
a1
3,aq ,eq

3,eq
Plasma
PCO2 ,blood  40mm  12
. x103 M
HCO3-=24mmol/L
pH=7.4
+
50%CO2,bound
hemoglobin
H2 CO3,aq
Carbonic anhydrase
HCO3,aq  H3O
Red Blood Cell
That is the Context for Buffering
1. Must control concentration of both
1. Conjugate acid
2. Conjugate base
2. So what are the equations, etc. necessary
to determining the buffering of a solution?
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
Henderson/Hassalbach
Buffer Equation
The body controls the pH ([H+]) concentration in blood by
1. controlling WA H2CO3 via CO2,g
2. controlling WB HCO3- through activity of the red blood cells
3. The WA and WB are linked (conjugates) so that an
equilibrium can be written between the two


H2 CO3,aq  H2 O 
HCO

H
O

3,aq
3 aq
4. All parameters are constant, leading to constant pH

 H CO
2
3,aq ,eq
pH  pKa1  log

HCO

3,eq





5. This process is called buffering
A general equation can be written

 HA
,aq ,eq

pH  pKa  log

A

,eq
 



  mmoleA   


total
mL


pH  pKa  log 
 mmoleHA  

 

totalmL



 HA
,aq ,eq
pH  pKa  log

A

,eq


1 



mmoleA

total
mL


pH  pKa  log 
1 


 mmoleHA
totalmL  

 



 mmoleA  
pH  pKa  log

 mmoleHA 
moles x 103 mmoles x L
= mmoles
L
moles
103 mL
mL
mL x mmoles = mmoles
mL
mL x M = mmoles
Henderson Hasselbach Equation

 HA
,aq ,eq
pH  pKa  log

A

,eq
 



 mmoleA 
pH  pKa  log

mmoleHA


OR
 
 A
,eq
pH  pKa  log
 HA,aq ,eq






Linked (conjugated)


if mmoleA  mmoleHA
pH  pKa  log1  pKa  0
pH  pKa
OJO this is NOT
the “equivalence point”
mmole titrant   mmole titrated 
Galen, 170
Marie the Jewess, 300
Charles Augustin
James Watt
Coulomb 1735-1806 1736-1819
Justus von
Thomas Graham
Liebig (1803-1873 1805-1869
Ludwig Boltzman
1844-1906
Gilbert N
Lewis
1875-1946
Henri Louis
LeChatlier
1850-1936
Johannes
Bronsted
1879-1947
Jabir ibn
Hawan, 721-815
Luigi Galvani
1737-1798
Richard AC E
Erlenmeyer
1825-1909
An alchemist
Count Alessandro G
A A Volta, 1747-1827
James Joule
(1818-1889)
Henri Bequerel
1852-1908
Lawrence Henderson
1878-1942
Galileo Galili Evangelista Torricelli
1564-1642
1608-1647
Amedeo Avogadro
1756-1856
Rudolph Clausius
1822-1888
Jacobus van’t Hoff
1852-1911
Niels Bohr
1885-1962
John Dalton
1766-1844
William Thompson
Lord Kelvin,
1824-1907
Johannes Rydberg
1854-1919
William Henry
1775-1836
Johann Balmer
1825-1898
J. J. Thomson
1856-1940
Erwin Schodinger Louis de Broglie
1887-1961
(1892-1987)
Fitch Rule G3: Science is Referential
Jean Picard
1620-1682
Jacques Charles
1778-1850
Francois-Marie
Raoult
1830-1901
Heinrich R. Hertz,
1857-1894
Friedrich H. Hund
1896-1997
Daniel Fahrenheit
1686-1737
Max Planck
1858-1947
Rolf Sievert,
1896-1966
Blaise Pascal
1623-1662
Georg Simon Ohm
1789-1854
James Maxwell
1831-1879
Robert Boyle,
1627-1691
Isaac Newton
1643-1727
Michael Faraday
1791-1867
B. P. Emile
Clapeyron
1799-1864
Dmitri Mendeleev
1834-1907
Svante Arrehenius
Walther Nernst
1859-1927
1864-1941
Fritz London
1900-1954
Wolfgang Pauli
1900-1958
Johannes D.
Van der Waals
1837-1923
Marie Curie
1867-1934
Anders Celsius
1701-1744
Germain Henri Hess
1802-1850
J. Willard Gibbs
1839-1903
Fritz Haber
1868-1934
Thomas M Lowry
1874-1936
Werner Karl Linus Pauling Louis Harold Gray
1905-1965
Heisenberg 1901-1994
1901-1976
Buffer Example 1 what is equilibrium pH of a solution of 1.0
M HF, and 1.0 M NaF? Ka HF = 7.2x10-4
Do we have linked WA and WB both present?

_
HFaq  H2 Ol 
H
O

F

3 aq
aq
pH  pKa
Yes = buffer
  A  
pH  pKa  log 



HA


 F  
pH  pKa  log 

  HF  
. 
 10
pH  pKa  log 
. 
 10
pH  pKa  log1
pH  pKa  0
Ka=7.2x10-4
pH   log7.2x104 
pH   log7.2x104   314
.
In preceding module 17B we calculated the pH of
A solution of 1.0 M HF and found it to be
pH  157
.
What causes the difference?
LeChatlier’s Principle
HFaq  H2 Ol 
 H3Oaq  Faq_
HF push to right
pH  157
.

NaFaq  H2 Ol  Faq  Naaq
complete
HFaq  H2 Ol 
 H3Oaq  Faq_
HF push to right
pH  314
.
Effect of added NaF is to reduce the ionization of HF
Buffer Example 2:What is the pH of 1.0 M H2CO3 in
the presence of 1.0 M NaHCO3
What is in solution? Are the chemical species linked by an equilibrium
reaction?


H2 CO3,aq  H2 O 
HCO

H
O

3,aq
3 aq
Ka1  4.4 x10
Solution contains a weak acid in the presence of it’s linked
(conjugate) weak base
pH  6.36  log1
A 
pH  pKa  log 

  HA 

pH  6.36  0  6.36

 1M NaHCO3
pH   log(4.4 x10 )  log
 1M H2 CO3
7


 
7
Buffer Example 3:What is the pH of a solution
containing 0.25 M NH3 (Kb = 1.8x10-5) and 0.40 M
NH4Cl?
What is in solution? Are the chemical species linked by an equilibrium
reaction?
5



Kb  18
. x10
NH3,aq  H2 O  NH4 aq  OHaq
or

K
14
14
10
w
w
K
10
10
w 
K


5556
.
x
10
a

Kaa  Kb  18
 55
.
x
10
Kbb 18
. x10

NH4aq  H2 O 
 NH3,aq  H3 Oaq
Solution contains a weak acid in the presence of it’s linked
(conjugate) weak base
  A  
pH  pKa  log 



 HA 


 0.25 M NH
3,aq
 10

pH   log(5.55x10 )  log
 0.40 M NH 
4 ,aq

 

 0.25
pH  9.25  log

 0.4 
pH  9.25    0.204  9.05
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
4 Kinds of Problems
Reviewed
We now know how to do 4 types of problems
Limiting Reagent must involve SA or SB
Which reagent
is completely
consumed?
Which remains?

HClaq  NaOH  Claq  H2 Oaq  Naaq
completely , Limiting reagent

HAaq  NaOH  Aaq  H2 Oaq  Naaq
completely , Limiting reagent


Naaq
 Aaq  HCl 
 HAaq  Claq  Naaq
completely , Limiting Re agent
WA


HAaq  H2 O 
 Aaq  H3 Oaq
Ka


   x x  10   x
 HA   HA   x  HA , 
H3 Oaq Aaq
7
Equilibrium
aq ,eq
2
aq init
aq ,init

Aaq  H2 O 

OH

aq  HAaq
WB
Kb



OH aq HAaq ,eq
A 

Aaq  H2 O 
  OHaq  HAaq
WA +conjugate



HA

H
O
A

H
O
aq
2   aq
3 aq
(linked) WB

aq ,eq

x x  10  7 

x2
 A   x  A 

aq ,init

aq ,init
 A 
  A  init  

eq 
  pK  log 

pH  pKa  log 
a
 HA 
HA

init 


eq 





To refresh your memory on Limiting Reagent Problems
Calculate the concentration of Na+, Cl-, CH3COO-, and CH3COOH in solution when
10.0 mL of 1.0 M HCl is added to 6.0 mL of 2.0 M NaAcetate acid (NaCH3COO).
Each solution is obtained from made from a stock solutions at 1 atm pressure
What do we know
10.0 mL 1.0 M HCl
5.0 mL 2.0 M NaCH3COO
1 atm
What do we want
What is a red herring?
Conc.
Classify the chemical substances added to solution:
Strong Acid (SA) Protonated low q/r anion (No Clean Socks) HNO3, HCl, H2SO4
Strong Base (SB) OH +low q/r Cation (Group 1 and 2) NaOH, KOH, Ca(OH)2…
Strong electrolyte (SE) Anion and Cation, low q/r
NaCl, KNO3….
Weak Acid (WA)
Protonated hi q/r anion (Oh Card me PleaSe) H2CO3…..
Weak Base (WB)
Contains R group, anion hi q/r with cation low q/r Na2CO3
Other or unknown (OU)
To refresh your memory on Limiting Reagent Problems
Calculate the concentration of Na+, Cl-, CH3COO-, and CH3COOH in solution when
10.0 mL of 1.0 M HCl is added to 6.0 mL of 2.0 M NaAcetate acid (NaCH3COO).
Each solution is obtained from made from a stock solutions at 1 atm pressure
 mL M  mmoles
SA/WB
Determine the Limiting Reagent
completely , Limiting Re agent


Naaq
 Aaq  HCl 
 HAaq  Claq  Naaq
HCl can produce
 10
. moleHCl   1moleH    1moleCH3COOH 
10.0mLHCl  1L   1mole   1mole    10mmolesCH3COOH

HCl
HCl 
H
WB can produce
Haq  CH3COOaq 
 CH3 COOHaq
completely , Limiting Re agent
6.0mL
NaCH3COOl
 2.0mole NaCH3COO   1moleCH3COO   1moleCH3COOH 
  12mmoles
 

 
CH3COOH

 1LNaCH3COO   1mole NaCH3COO   1moleCH3COO 

SA (HCl) is limiting reagent, completely consumed, 0mmoles
WA formed is 10 mmoles
How much WB remains?
To refresh your memory on Limiting Reagent Problems
Calculate the concentration of Na+, Cl-, CH3COO-, and CH3COOH in solution when
10.0 mL of 1.0 M HCl is added to 6.0 mL of 2.0 M NaAcetate acid (NaCH3COO).
Each solution is obtained from made from a stock solutions at 1 atm pressure
SA/WB
Haq  CH3COOaq 
 CH3 COOHaq
completely , Limiting Re agent
SA (HCl) is limiting reagent, completely consumed, 0mmoles
WA formed is 10 mmoles
WB initial 12 mmoles; WB consumed:
 10
. moleHCl   1moleH    1moleCH3COOH   1moleCH3COO 
  10mmolesCH COO
10.0mLHCl  1L   1mole   1mole    1mole
3

HCl
HCl 
CH3COOH 
H
Initial-consumed=12-10=2mmoles WB left
Concentrations after the limiting reagent reaction
CH COOH  
10mmolesCH3COOH
CH COO  
2.0mmolesCH3COOH
3

3
10.0mL  6.0mL
10.0mL  6.0mL
 6mL 2 M
 0.625 M
 Na   10.0mL  6.0mL  0.75 M
 0125
. M
 Cl   10.0mL  6.0mL  0.625 M


10mL10
. M
To refresh your memory on Limiting Reagent Problems
Concentrations
CH COOH  
10mmolesCH3COOH
CH COO  
2.0mmolesCH3COOH
3

3
10.0mL  6.0mL
10.0mL  6.0mL
 6mL 2 M
 0.625 M
 Na   10.0mL  6.0mL  0.75 M
 0125
. M
 Cl   10.0mL  6.0mL  0.625 M


10mL10
. M
In the preceding problem what kind of equilibrium problem remains?
You have 3 choices:
WA
WB
WB and its conjugate WA (or WA and its conjugate WB)
We have present a weak acid (WA) and it’s linked (conjugate) weak base (WB)
. M
CH COO   0125
CH COOH  0.625M

3
3
Buffer equilibrium problem
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
A feast of titrations
We can combine Limiting
reagent problems followed
by an equilibrium problem
to do a titration
Titrations allow us to determine
the conc of an unknown
Titrations involve 1 of 3 LR followed by 1 of 3 Eq
Limiting Reagent must involve SA or SB
Which reagent
is completely
consumed?
Which remains?

HClaq  NaOH  Claq  H2 Oaq  Naaq
completely , Limiting reagent

HAaq  NaOH  Aaq  H2 Oaq  Naaq
completely , Limiting reagent


Naaq
 Aaq  HCl 
 HAaq  Claq  Naaq
completely , Limiting Re agent
WA


HAaq  H2 O 
 Aaq  H3 Oaq
Ka


   x x  10   x
 HA   HA   x  HA ,init 
H3 Oaq Aaq
7
Equilibrium
aq ,eq
2
aq
aq ,init

Aaq  H2 O 

OH

aq  HAaq
WB


Kb


x2  x K  107  K Init  0

OH aq HAaq ,eq
A 

aq ,eq

x x  10  7 

x2
 A   x  A 

aq ,init

aq ,init

Aaq  H2 O 
  OHaq  HAaq
WA +conjugate
(linked) WB


HAaq  H2 O 
A

H
O
 aq
3 aq
 A 
  A  init  

eq 
  pK  log 

pH  pKa  log 
a
 HA 
HA

init 


eq 





Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
Main Dish: Limiting Reagent Problem
x   10  7 ?
CH3COOH  OH   CH3COO  H2 O
x  02
. ?
 1mmole

1mmole
CHCH
3COO
3COO





0M
.20
M
40
mL
0.020
.20
M
40
40
mL
mL

8
mmoleCH
COO
acetic
acid
acetic
acid
acetic
acetic
acid
acid
acetic
acetic
acid
acid 
3

1mmole
 1 mmole

CHCH
3COOH
3COOH
 1mmoleCH3COO 
0.40 M NaOH 0mLNaOH  1mmole   0mmoleCH3COO 
NaOH

 
 
limiting
Solution contains CH3COOH
Sig fig, round to 0.2
Solution contains no NaOH
Solution contains no CH3COOKa
Side dish: WA
H O  A 

x x  10 
x



 HA   HA   x  HA ,init 
3

aq

aq
aq ,eq
7
aq ,init
2
.
x10
 H   x  1897
aq
Ka  18
. x105 ; try assumptions
18
. x10
5
x2

0.20
0.20
 0.001897
019810263
.
18. x105  0.20 
x  1897
.
x10  3

aq
3
pH   log1897
. x10 3 
pH  2.72
If you prefer –
do an ICE chart
Equilibrium Calculation.
Rx 1
H2O
H+
OH55.5
10-7
10-7
Rx 2
CH3CO2H
H+
CH3CO2init
0.200
10-7
0
change
-x
+x
+x
assume
x<<0.2
x>>10-7
equil
0.2
x
x
CH CO  H  010

Q


2 ,init
3

init
CH CO H 
3
2
init
7
0.2

  K 
Because rx goes to right
Sign of x is neg for reactants
Titrate 40 mL 0.20 acetic acid with 0.
40 M NaOH 0, 5, 10, 19, 20, 21,25 mL;
Ka = 1.8x10-5
Ka  18
. x105 ; try assumptions
r
18
. x10
check? yes.
5
x2

0.20
18. x105  0.20 
x  1897
.
x10  3
pH   log(189
. x10 3 )  2.72
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL
pH
0
2.72
Main Dish: Limiting Reagent Problem
CH3COOH  OH   CH3COO  H2 O
 1mmoleCH3COO 
0.40 M NaOH 5mLNaOH  1mmole   2.0mmoleCH3COO 
NaOH

0.20 M CH3COOH 40mLCH3COOH
Limiting Reagent
 1moleCH3COO 

  8.0mmoleCH3 COO 
 1moleCH3COOH 

Solution contains 2.0 mmole CH3COO2.0mmoleCH COO 
CH COO   40mL

3
CH3COOH
3
 5mL NaOH
 0.0444 M
2.0 mmole CH3COOH used to make 2 mmole CH3COO8.0mmole  2.0mmole
CH3COOH 
 01333
.
M
40mLCH3COOH  5mLNaOH


Side Dish: Buffer
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL
pH
0
2.72
CH3COOH  OH   CH3COO  H2 O
5
4.27
2.0mmoleCH COO 
CH COO   40mL

3
CH3COOH


CH3COOH 
3
 5mL NaOH
 0.0444 M
8.0mmole  2.0mmole
 01333
.
M
40mLCH3COOH  5mLNaOH
  A  
pH  pKa  log 

  HA 
 0.0444 
pH   log(18
. x10 )  log

.
 01333
5
pH  4.74    0522
. 
pH  4.27
Invoke Rule:
Chemists Are Lazy
  mmolesA   


total
mL


pH  pKa  log 
 mmolesHA  


  total mL  
 mmolesA  
pH  pKa  log

mmolesHA


 2
pH  4.74  log   4.27
 6
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL pH
0 2.72
5 4.27
Main Dish: Limiting Reagent Problem
10 4.74
CH3COOH  OH   CH3COO  H2 O
 1moleCH3COO 
0.40 M NaOH 10mLNaOH  1mole   4.0mmoleCH3COO 
NaOH
0.20 M
CH3COOH
40mL
CH3COOH
Limiting Reagent
 1moleCH3COO 

  8.0mmoleCH3 COO 
 1moleCH3COOH 

Solution contains 4.0 mmole CH3COOSolution contains 8.0-4.0 mmole CH3COOH
 mmolesA  
pH  pKa  log

 mmolesHA 
 4 
pH  4.74  log
 4.74  log 1  4.74

8

4


Side Dish: buffer
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL pH
0 2.72
5 4.27
Main Dish: Limiting Reagent Problem
10 4.74
19 6.02
CH3COOH  OH   CH3COO  H2 O
 1moleCH3COO 
0.40 M NaOH 19mLNaOH  1mole   7.6mmoleCH3COO 
NaOH
0.20 M
CH3COOH
40mL
CH3COOH
Limiting Reagent
 1moleCH3COO 

  8.0mmoleCH3 COO 
 1moleCH3COOH 

Solution contains 7.6 mmole CH3COO8 CH3COOH – 7.6 mmole OH = 0.4 mmole
 mmolesA  
pH  pKa  log

 mmolesHA 
 7.6 
 7.6
pH  4.74  log

4
.
74

log
.
 6.02
   4.74  12787
 04 
 8  7.6 
Side Dish: buffer
 A   x10


Ka
7
 HA  x
 x
 0128
.
 x 10  7  x 

; pH  6.08
.00677  x
 mmolesA  
pH  4.77  log
  6.04
 mmolesHA 
titration of acetic acid
14
12
Calculated pH
10
Difference between “exact” and non-exact
small
8
6
4
2
0
0
5
10
15
mL 0.400 NaOH
20
25
30
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL pH
0 2.72
5 4.27
Main Dish: Limiting Reagent Problem
10 4.74
19 6.02
CH3COOH  OH   CH3COO  H2 O
 1moleCH3COO 
0.40 M NaOH 20mLNaOH  1mole   8mmoleCH3COO 
NaOH
0.20 M
CH3COOH
40mL
CH3COOH
 1moleCH3COO 

  8.0mmoleCH3 COO 
 1moleCH3COOH 

Both Are
Limiting Reagents
USED UP
Solution contains 8 mmole CH3COO8 mmole CH3COOH-8 mmole OH = 0 mmole CH3COOH
Side Dish: acetate = WB

CH3COOaq  H2 O 
CH
COOH

OH

3
aq
aq
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL pH
0 2.72
5 4.27
Solution contains 8 mmole CH3COO10 4.74

19 6.02
CH3COOaq  H2 O 
CH
COOH

OH

3
aq
aq
20 8.93
CH COO 

aq
3
Kb
8mmole

 01333
.
40mL  20mL
x   01333
.
?
x   10  7 ???
HA OH 

x x  10 
x



A 
 A   x  A 
aq ,eq

aq

aq ,eq
7

aq ,init
Kw
10 14
Kb 

. x10 10
15  555
Ka 18
. x10
Kb “small”, assumps. Ok.
555
. x10 10
x2

01333
.
2

aq ,init
. x10 10 01333
.
~ x  8.59 x10  6
555
 OH ~ x  859
. x10 6


pH  14   log8.59 x10  6   8.93
If you prefer – do an ICE chart
Calculate equilibrium
H2O
H+
OH55.5
10-7
10-7
CH3CO2- CH3CO2H OH
init conc:
0.133
0
10-7
change
-x
+x
+x
assume
(not much reaction to right, Kb small)
x << 0.133
x>> 10-7
equil
0.133
x
x
CH CO H OH  010 

Q

  K 
3
2
init
CH CO 
3

init
7
r

2 ,init
0.2
Sign of x for reactants is Titrate 40 mL 0.20 acetic acid with 0.
40 M NaOH 0, 5, 10, 19, 20, 21,25 mL
Kw
10 14
10
Kb 


555
.
x
10
Ka 18
. x1015
Kb “small”, assumps. Ok.
555
. x10
10
x2

0133
.
. x10 10  0133
. 
555
pH  14  pOH   log(859
. x10 6 )  8.93
x  8.59 x10  6
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL pH
0 2.72
5 4.27
Main Dish: Limiting Reagent Problem
10 4.74
19 6.02
CH3COOH  OH   CH3COO  H2 O
20 8.93
 1moleCH3COO 
21 11.82
0.40 M NaOH 21mLNaOH  1mole   8.4mmoleCH3COO 
NaOH
0.20 M
CH3COOH
40mL
CH3COOH
 1moleCH3COO 

  8.0mmoleCH3 COO 
 1moleCH3COOH 

Limiting Reagent
Side dish: seconds of the main
Excess OH
 OH 

 OH 
excess

excess

8.4  8

 0.006557
40  20  1
p OH   excess   log 0.006557
Or
p OH   excess  218
.
1mL  0.40 M 
excess
40  20  1
 0.006557
pH  14  pOH  14  2.18  1182
.
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL pH
0 2.72
5 4.27
Main Dish: Limiting Reagent Problem
10 4.74
19 6.02
CH3COOH  OH   CH3COO  H2 O
20 8.93
 1moleCH3COO 
21 11.82
0.40 M NaOH 25mLNaOH  1mole   10mmoleCH3COO 
25 12.48
NaOH
0.20 M
CH3COOH
40mL
CH3COOH
 1moleCH3COO 

  8.0mmoleCH3 COO 
 1moleCH3COOH 

Limiting Reagent
Side dish: seconds of the main
Excess OH
 OH 

 OH 
excess

excess

10  8

 0.030769
40  20  5
p OH   excess   log 0.030769
Or
p OH   excess  1511
.
5mL  0.40 M 
excess
40  20  5
 0.030769
pH  14  pOH  14  1511
.
 12.48
Defining some points on the Titration Curve
titration of acetic acid
14
Strong Base
Regions of A WEAK ACID titration curve
12
Buffer
Calculated pH
10
Weak Base
8
6
4
2
WeakAcid
0
0
5
10
15
20
25
mL 0.400 NaOH
½ way buffer
Tells us identity of acid
30
½ way to the equivalence point

aq

aq
HAaq  OH  A
½ of HA is converted to AmmoleHAinitial
 mmoleHAremainng  mmoleA formed
2
 mmolesA  
pH  pKa  log

 mmolesHA 
pH  pKa  log1
pH  pKa
pKa is a clue to the identity of the
acid
1
14
14
14
2
eq pt ; pH  pKa
Titrate 50 mL 1.0 M WA with
1.0 M NaOH
12
12
12
Clue
I.D. 101010
Of acid
pH
pH
pH
888
666
444
222
000
000
10
10
10
20
20
20
30
30
30
Valenine RCOOH; pKa  2.30
HF ; pKa  314
.
40
40
50
50
60
60
40
50
60
mL
mL
base
base
added
added
mL
base
added
70
70
70
80
80
80
CH3COOH; pKa  4.74
NH4 ; pKa  9.255
90
90
90
100
100
100
Defining some points on the Titration Curve
titration of acetic acid
14
Strong Base
Regions of A WEAK ACID titration curve
12
Buffer
Calculated pH
10
Weak Base
8
6
4
2
WeakAcid
0
0
5
10
15
20
mL 0.400 NaOH
½ way buffer
Eq. pt.
25
30
This is what
Tells us the conc.
Titrate __mL of 1.0 M Acetic Acid with 1.0 M NaOH
13 25
14
14
50
75
100
125
12
12
10
10
pH
pH
8
6
4
2
0
8
6
Observation 1?
Observation 2?
4
2
0
0
0
20
20
40
40
60
60
80
100
120
80
100
120
mL strong base added
mL strong base added
You should have at least 2 observations
What are they?
140
140
160
160
180
180
200
200
We found the equivalence point (large pH change) occurred when
we added 20 mL of 0.40 M NaOH to 40 mL of an unknown conc
of acetic acid. What was the original concentration of the acetic
acid?
mmole titrant 
eq . pt
 mmole titrated  eqpt
or
 20mL 0.40 M    40mL x
x
 20mL 0.40 M 
40mL
x  020
. M
OJO, not
pH  pKa
V  M  V  M
 20 0.40   40 M
 20 0.40
M
mmoleA   mmoleHA
40
 0.2
Be sure to account for
Multiple protons or
hydroxides
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
Indicators
Choose an Indicator so there will be a color change at the equivalence
point
titration of acetic acid
14
Strong Base
Regions of A WEAK ACID titration curve
12
Calculated pH
10
Buffer
8.93
Weak Base
8
6
4
2
WeakAcid
0
0
5
10
15
20
mL 0.400 NaOH
½ way buffer
Eq. pt.
25
30
How can we “see” the pH jump so we know where the end point is?
Indicators:
plum juice (tannic acid); red wine
H(tannic)
HIn
pink
HO
H+ + Ingreen
HO
OH
HO
HO
OH
HO
OH
HO
OH O
O
OH
O
O
O
O
O
OH
HO
OH
HO
O
O
O
O
O
HO
O
O
O
O
O
O
OH
OH
O
OH
HO
HO
O
HO
HO
OH O
HO
OH
O
HO
OH
OH
OH
O
OH O
OH
OH
HO
OH
O
OH
O
O
O
O
OH
HO
O
OH
O
O
O
HO
OH
O
O
OH
O
O
HO
OH
O
O
OH O
O
OH
O
Remove
protons
OH
OH
HO
OH
Connects electrons through ring,
Core structure= cyanidin
Blueberries
Raspberries
Cranberries
Red cabbage
Red wines
Red cabbage primarily
http://antoine.frostburg.edu/chem/senese/101/features/water2wine.shtml
CAS 528-58-5
http://www.uni-regensburg.de/Fakultaeten/nat_Fak_IV/Organische_Chemie/Didaktik/Keusch/p26_anth-e.htm
Hydrangea flower color based on available aluminum
Cation in the soil
Indicators:

plum juice (tannic acid)
HIn
pink
H  In 


H+
+
Ingreen
Ka
H 

Ka

 HIn
Ka
H 

 In 


 HIn
moles green
total vol
moles green


moles pink
moles pink
total vol
Observed color? When is it green vs pink?
Ratio: 10 Green/1 Pink
Ratio: 10 Pink/1Green
Observed color? depends on mole ratio
Rule of thumb (10/1 or 1/10)
Ka
10 moles green

 green

H  moles pink
pKa  ( log10)  p H  
Ka
H 

moles green

 pink
10 moles pink
 log10  pKa  pH
Ka
 H 
10
pHgreen  pKa  1
10Ka   H  
pH pink  pKa  1
pHcolor change  pKa ,indicator  1
 pH  pKa  1
Common Indicators (besides grape juice)
Name
pHcolor change = pKa +/- 1
methyl violet
thymol blue
bromophenol blue
methyl red
phenol red
bromothymol blue
phenolphthalein
alizarin yellow R
0-2
1-3
3-5
4.5-6.5
6.5-8
6-8
8-10
10-12
pKa
5
7.1
9
Change centered over pKa
Color change over 2 pH units
Common Indicators (besides grape juice)
Name
methyl violet
thymol blue
bromophenol blue
methyl red
phenol red
bromothymol blue
phenolphthalein
alizarin yellow R
pHcolor change = pKa +/- 1
0-2
1-3
3-5
4.5-6.5
6.5-8
6-8
8-10
10-12
pKa
Biggest pH change in our calculation
was centered at pH 8.93
5
7.1
9
Name
pHcolor change = pKa +/- 1
methyl violet
thymol blue
bromophenol blue
methyl red
phenol red
bromothymol blue
phenolphthalein
alizarin yellow R
Titrate 40 mL 0.20 acetic acid with 0.
40 M NaOH 0, 5, 10, 19, 20, 21,25 mL
0-2
1-3
3-5
4.5-6.5
6.5-8
6-8
8-10
10-12
pKa
5
7.1
9
Can omit for BLB
Choose an Indicator so there will be a color change at the equivalence
point
titration of acetic acid
14
12
Calculated pH
10
8
6
4
2
0
0
5
10
15
20
mL 0.400 NaOH
½ way buffer
Eq. pt.
25
30
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
Two more example titrations
WB/SA
SA/SB
A quick and dirty (WA/SB) titration curve.
mL added
problem
WA
0
1/2 to equivalence pt buffer
WB
equivalence pt
after equivalence pt SB
pH
<pKa
pKa
>7
Can you predict how a WB/SA
titration curve will work out?
Example Titration 2
titrate WB with SA
mL added
problem
0
WB
1/2 to equivalence pt buffer
equivalence pt
WA
after equivalence pt
SA
pOH
<pKb
pKb
pH
>pKa
=pKa
<7
Kb  18
. x105
Example titrate 50 mL 0.1 M NH3 0.2 M HCl
quick and dirty: 0 mL, 1/2 equivalence
point, 1 mL before eq. pt., eq. pt., 1 ml after
0 mL HCl added; WB
equilibrium chart
mL pH
0 11.13
NH3 + H2O NH4+ + OHinit. conc.
0.1
0
10-7
change
-x
+x
+x
assume? Kb = 1.8x10-5, not much reaction, yes
0.1> x
x>10-7
equil.
0.1
x
x


NH
OH

 4,init  init  0107 
5
Q
 NH 

3,init
Kb  18
. x10 5 
 x  10 7 x
01
. x
18. x105 01.  x 2
01
.
x2

01
.
 Kb  18
. x10
x
18. x105 01.
x  134
. x10  3
pOH   log134
. x10 3   287
.
pH  14  pOH  1113
.
need to know eq. pt.
50mL01
. MNH3   x 0.2 MHCl 
mL
0
12.5
x  25mLeq pt
25mL
1
 12.5mL
2 eq. pt . 
2
pH
11.13
9.25
Kb, NH3  18
. x105
pKb   log18
. x105   4.744
pH1/ 2 eq. pt  pKa
14  pKa  4.744
Kw
K w  Ka Kb ; Ka 
Kb
OR
pH1/ 2 eq. pt  pKa  9.25
In case you are wondering?
14  pKa  pKb
pOH1/ 2 eq. pt  pKb  4.7447
pKa  9.25
14  pOH1/ 2 eq. pt  pH  14  4.744  9.25
Example titrate 50 mL 0.1 M NH3 0.2 M HCl; include 1 mL and 1 mL after eq.pt.
Eq pt = 25 mL; pKa=9.25 (from preceding slide)
1 mL before eq. pt = 24mL.; LR prob
4.8 mmoles NH4+
Equilibrium prob?
0.2 mmoles NH3
Buffer
0.20 M 24mL   4.8mmoleH

HCl

HCl

pH
11.13
9.25
7.86
added  4.8mmolesHAformed
50mL 010
. M NH  4.8mmoles  0.2mmoles A- remaining
3
mL
0
12.5
24
pKa  9.25
 mmolesA  
pH  pKa  log

 mmolesHA 
 0.2 
pH  9.25  log 
 4.8 
pH  9.25  138
.  7.86
Example titrate 50 mL 0.1 M NH3 0.2 M HCl; include 1 mL and 1 mL after eq.pt.
Eq. pt. Problem; WA
NH4+
NH3 + H+
init conc .066
0
10-7
change
-x
+x
+x
Ka = 10-14/(1.8x10-5) = 5.5x10-10
Assump? 0.066>>x
x~10-7
equil
0.066
x
x+10-7
7
7 2
10 14
 10  10   41 3.66 x10 11 
10
Ka 
. x10
 5  55
x
18
. x10
21
7
7
x
10

x
x
10
 x



10
 10  7  10 14  146
. x10 10
55
. x10 

x
0.66  x
0.66
2
10
7
2
55. x10 0.66  10 x  x
 10  7  121
. x10  5
x
. x1011   10 7 x  x 2
366
2
7
x  10 x  3.66x10
2
11
0
x  6 x10
6
pH   log6x10 6   522
.
Eq pt = 25 mL; pKa=9.25 (from preceding slide)
1 mL past eq. pt.; 26 mL; SA
50mL 01
. M NH / NH 
3
1mL
50  25  1
excess
0.2 M 
50  25  1
HCl
4
mL
0
12.5
24
25
26
5mmole

 [ NH4 ]
76mL
pH
11.13
9.25
7.86
5.22
2.5
 2.63x10 3 M  [ H  ]
H+
conc. SA = conc.
=
pH = -log(2.63x10-3)
pH = 2.5
OR, limiting reagent
2.63x10-3
Limiting
Reagent
26mL 0.2 M   52mmoleNH
50mL 01. M   50mmoleNH
s
HCl
s
HCl
2mmole excess H 
2mmole
 2.63x10  3
50  25  1
Example titrate 50 mL 0.1 M NH3 0.2 M HCl; include 1 mL and 1 mL after eq.pt.

4

4
5 mL past eq. pt.
5mL  0.2 M 
excess
50  25  5
 125
. x10 2 M  [ H  ]
conc. SA = conc. H+ = 1.25x10-2
pH =-log(1.25x10-2)
pH=1.9
mL
0
12.5
24
25
26
30
pH
11.13
9.25
7.86
5.22
2.5
1.9
50 mL 0.1 NH3 titrated with 0.2 M HCl
12
10
buffer
WB
pH
8
1/2 eqpt
6
WA
4
2
eq pt SA
0
0
5
10
15
mL HCl
Choose an indicator?
20
25
30
Common Indicators (besides grape juice)
Name
pHcolor change = pKa +/- 1
methyl violet
0-2
thymol blue
bromophenol blue
methyl red
phenol red
bromothymol blue
phenolphthalein 8-10
alizarin yellow R 10-12
1-3
3-5
4.5-6.5
6.5-8
6-8
pKa
Biggest pH change is near 5.5
5
7.1
9
Example Titration 3: We have 25.0 mL of 0.200 M
HNO3. What will be the pH after we add 0, 20, 49,
50, 51, 75, 100 mL of 0.100 M NaOH
Main Course: SA/SB
Mmole
HNO3
init
 0.20 M  25mL
mL
OH
added
Side courses: more of same
Mmoles Mmole H+
excess
OH
added
 010
. M  mL
Mmole
OH excess
Total Vol
[H+]
Or
[OH-]
5
0
0
5-0=5
0
25+0
5/25=0.2
5
20
2
5-2=3
0
25+20=45
3/45=0.066
5
49
4.9
5-4.9=0.1
0
25+49=74
0.1/74=0.00135
5
50
5
5-5=0
0
25+50=75
H2O
5
51
5.1
5-5=0
5.1-5=0.1
25+51=76
0.1/76=0.00136
5
75
7.5
5-5=0
7.5-5=2.5
25+75=100
2.5/100=0.025
5
100
10
5-5=0
10-5=5
25+100=125
5/125=0.04
Example Titration 3: We have 25.0 mL of 0.200 M
HNO3. What will be the pH after we add 0, 20, 49,
50, 51, 75, 100 mL of 0.100 M NaOH
Main Course: SA/SB
Side courses: more of same
[H+]
Or
[OH-]
5/25=0.2
pH=-log(0.2)=0.0698
3/45=0.066
pH=-log(0.066)=1.17
0.1/74=0.00135
pH=-log(0.00135)=3.17
H2O
pH=7
0.1/76=0.00136
pOH=-log(0.0013)=2.88
pH=14-pOH=11.12
2.5/100=0.025
pOH=-log(0.025)=1.602
pH=14pOH=12.398
5/125=0.04
pOH=-log(0.04)=1.39
pH=14-pOH=12.61
Titration of 50 mL 0.2 M HNO3
14
12
pH
10
Where is
largest pH?
What indicator
should we use?
8
6
4
2
0
0
20
40
ml 0.1 M NaOH
60
80
We have 25.0 mL of 0.200 M HNO3. What will be the pH after we add 0, 20, 49, 50, 51, 75, 100 mL of 0.100 M NaOH
Common Indicators (besides grape juice)
Name
pHcolor change = pKa +/- 1
methyl violet
0-2
thymol blue
bromophenol blue
methyl red
phenol red
bromothymol blue
phenolphthalein 8-10
alizarin yellow R 10-12
1-3
3-5
4.5-6.5
6.5-8
6-8
pKa
Biggest pH change is near 7
5
7.1
9
Color change defines large pH change
Titration of 50 mL 0.2 M HNO3
14
blue
12
SB
pH
10
8
6
SA
4
yellow
2
0
0
20
40
ml 0.1 M NaOH
60
80
We have 25.0 mL of 0.200 M HNO3. What will be the pH after we add 0, 20, 49, 50, 51, 75, 100 mL of 0.100 M NaOH
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
END
Tannins – represent linked cyanidins
Red wine - antioxidants
http://www.micro-ox.com/chem_tan.htm
Food Source Anthocyanins Glycoside form
apple
blueberry
cyanidin
malvidin
petuniclin
monoglycoside
monoglycoside
monoglycoside
delphinidin
monoglycoside
cranberry
cyanidin
peonidin
monoglycoside
monoglycoside
red cabbage
cyaniclin
diglycoside
strawberry
pelargonidin
monoglycoside
cyanidin
monoglycoside