“A” students work (without solutions manual) ~ 10 problems/night. Dr. Alanah Fitch Flanner Hall 402 508-3119 [email protected] Office Hours Th&F 2-3:30 pm Module #17C: Buffering and Titrations Holding Proteins intact By.
Download
Report
Transcript “A” students work (without solutions manual) ~ 10 problems/night. Dr. Alanah Fitch Flanner Hall 402 508-3119 [email protected] Office Hours Th&F 2-3:30 pm Module #17C: Buffering and Titrations Holding Proteins intact By.
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
Holding Proteins intact
By pH constant
General
FITCH Rules
G1: Suzuki is Success
G2. Slow me down
G3. Scientific Knowledge is Referential
G4. Watch out for Red Herrings
G5. Chemists are Lazy
qq
E k
C1. It’s all about charge
r r
C2. Everybody wants to “be like Mike”
qq
C3. Size Matters
E k
r r
C4. Still Waters Run Deep
Piranhas lurk
C5. Alpha Dogs eat first
1 2
Chemistry
el
1
2
1 2
el
1
2
What pH is best suited
For the hydrogen bond?
Ka ,Val ,COOH 501
. x10 3
Ka,tyr ,ROH 10
. x1010
Hemeglobin
Review Module 17B
Which pH (2, 7, 11) is most favorable for the formation of
a hydrogen bond between Val and tyr in hemoglobin
Ka ,Val ,COOH 501
. x10 3
% dissociated
100 A
A H O
aq ,eq
3
aq ,eq
Ka
% dissociated
H O
3
Ka,tyr ,ROH 10
. x1010
A
aq ,eq
aq ,eq
100
aq ,eq
Ka
1
pH
pH
22
7
11
KaCOOH
KaCOOH Ka ROH
5.00E-03
5.00E-03 1.00E-10
[H+]
%diss
%diss
[H+]
%diss
1.00E-02
1.00E-02 33.33333
33.33333 1E-06
1.00E-07
99.998
0.0999
1.00E-11
100
90.90909
pH2 10 2
100
100
% dissociatedCOOH
33.33
% dissociatedCOOH 10 2 2
10 3 1
5.01x10 3 1
Review Module 17B
5.01x10
How does the body maintain
This pH?
http://www.meddean.luc.edu/lumen/MedEd/MEDICINE/pulmonar/physio/pf4.htm
How does the body maintain pH ~7?
Remember it will have to constantly adjust to changes in pH
From an enormous number of chemical reactions!!!
Control is ultimately based on CO2,(g)
Cg PCO2 k H
Respired (breathed) air PCO2 =0.23 mm Hg
k H 3.4 x10
Pressure increases through mechanics of lung
Aorta PCO2=41.8mmHg
M
1atm
2
42mmCO2
. x10 3 M
3.4 x10
187
760mm
L atm
2
Henry’s law
moles
L atm
All dissolved CO2 goes to carbonic acid
CO2, g H2 O
H2 CO3aq
Carbonic acid is a weak acid
(anion is high charge density, Oh Card me PleaSe!)
Ka1 4.4 x10 7
H2 CO3,aq H2 O
HCO
H
O
3,aq
3 aq
Ka1
HCO H O
x10
H CO H CO
3,eq
2
x
aq ,eq
3
3,aq ,eq
Ka1 H2 CO3,3,aq ,init
2
7
x
3,aq ,init
x2
x H CO
. x1033
4.4x107 187
2
3,aq ,init
8.228x1010 2.86x105
H O x
3
aq ,eq
p H3Oaq ,eq log2.86x10 5 4.54
This is too low!!! – we would not have the
Right amount of ionization on the protein
H2 CO3,aq H2 O
Ka1 4.4 x10 7
aq
HCO3,aq H3O
2
HCO3,aq H2 O
CO
H
O
3,aq
3 aq
Ka2 4.7 x10
p H3Oaq ,eq log2.29 x10 5 4.54
Will the pH get to the “right” value by the second acid
Dissociation reaction?Let’s make an “intelligent” guess
Ka 2
CO H O x2.86x10
2
3,eq
HCO
3
aq ,eq
3,aq ,eq
2.86x10
5
5
x
x
2.86x105 xKa2 x2.86x105 x
2.86x105 Ka 2 xKa 2 2.86x105 x x 2
x
Ka2
x2.86x10 5
11
NO, would
Only slightly
Increase acidity
x 4.7 x10 11
2.86x105
x 2 286
. x105 x 134
. x1015 0
2.86 x10 5
. x10 15
2.86x10 5 2 4 134
2
2.86x10 5 81796
.
x10 10 5.36x10 15
x
2
x 2 2.86x105 x 2.86x105 Ka 2 xKa 2 0
2.86 x10 5 2.8600093x10 5
x
2
2
5
5
x 2.86x10 Ka 2 x 2.86x10 Ka 2 0
9.37 x10 11
11
2
5
11
5
11
x
4
.
68
x
10
x 2.86x10 4.7x10 x 2.86x10 4.7x10 0
2
H2 CO3,aq H2 O
HCO
H
O
3,aq
3 aq
Ka1 4.4 x10
7
Will the pH get to the “right” value by the second acid
5
p
H
O
log
2
.
29
x
10
4.54
3
aq
,
eq
Dissociation reaction?
HCO3,aq H2 O
CO3,aq
2
Ka2 4.7 x10
aq
H3 O
To tweak blood pH to 7.4
red blood cells (RBC)
control [HCO3-]
RBC
HCO
3 aq ,eq
blood
4.0x10 2 M
11
H2 CO3,aq H2 O
HCO
H
O
3,aq
3 aq
H CO
2
3,aq
CO2 , g
HCO
3 aq ,eq
Ka1
187
. x10 M
2.4 x10 2 M
H 2 CO3,aq ,eq
H CO
2
3,aq ,eq
pH pKa1 log
HCO3,eq
RBC
HCO3,eq H 3 Oaq ,eq
H CO
2
3,aq ,eq
pH log Ka1 log
HCO3,eq
3
Ka1 4.4 x10 7
H CO
K
H O
pH log4.4x10 log 00779
.
HCO
pH 6.35 1108
. 7.45
H CO
H O K HCO
Value can be controlled
H
CO
by red blood cell
pH log H O log K
HCO
a1
3
3,aq ,eq
3
3,eq
aq ,eq
2
a1
3
aq ,eq
7
3,aq ,eq
3,eq
aq ,eq
187
. x10 3
pH log4.4 x10 log
2
2.4 x10
7
2
2
a1
3,aq ,eq
3,eq
Plasma
PCO2 ,blood 40mm 12
. x103 M
HCO3-=24mmol/L
pH=7.4
+
50%CO2,bound
hemoglobin
H2 CO3,aq
Carbonic anhydrase
HCO3,aq H3O
Red Blood Cell
That is the Context for Buffering
1. Must control concentration of both
1. Conjugate acid
2. Conjugate base
2. So what are the equations, etc. necessary
to determining the buffering of a solution?
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
Henderson/Hassalbach
Buffer Equation
The body controls the pH ([H+]) concentration in blood by
1. controlling WA H2CO3 via CO2,g
2. controlling WB HCO3- through activity of the red blood cells
3. The WA and WB are linked (conjugates) so that an
equilibrium can be written between the two
H2 CO3,aq H2 O
HCO
H
O
3,aq
3 aq
4. All parameters are constant, leading to constant pH
H CO
2
3,aq ,eq
pH pKa1 log
HCO
3,eq
5. This process is called buffering
A general equation can be written
HA
,aq ,eq
pH pKa log
A
,eq
mmoleA
total
mL
pH pKa log
mmoleHA
totalmL
HA
,aq ,eq
pH pKa log
A
,eq
1
mmoleA
total
mL
pH pKa log
1
mmoleHA
totalmL
mmoleA
pH pKa log
mmoleHA
moles x 103 mmoles x L
= mmoles
L
moles
103 mL
mL
mL x mmoles = mmoles
mL
mL x M = mmoles
Henderson Hasselbach Equation
HA
,aq ,eq
pH pKa log
A
,eq
mmoleA
pH pKa log
mmoleHA
OR
A
,eq
pH pKa log
HA,aq ,eq
Linked (conjugated)
if mmoleA mmoleHA
pH pKa log1 pKa 0
pH pKa
OJO this is NOT
the “equivalence point”
mmole titrant mmole titrated
Galen, 170
Marie the Jewess, 300
Charles Augustin
James Watt
Coulomb 1735-1806 1736-1819
Justus von
Thomas Graham
Liebig (1803-1873 1805-1869
Ludwig Boltzman
1844-1906
Gilbert N
Lewis
1875-1946
Henri Louis
LeChatlier
1850-1936
Johannes
Bronsted
1879-1947
Jabir ibn
Hawan, 721-815
Luigi Galvani
1737-1798
Richard AC E
Erlenmeyer
1825-1909
An alchemist
Count Alessandro G
A A Volta, 1747-1827
James Joule
(1818-1889)
Henri Bequerel
1852-1908
Lawrence Henderson
1878-1942
Galileo Galili Evangelista Torricelli
1564-1642
1608-1647
Amedeo Avogadro
1756-1856
Rudolph Clausius
1822-1888
Jacobus van’t Hoff
1852-1911
Niels Bohr
1885-1962
John Dalton
1766-1844
William Thompson
Lord Kelvin,
1824-1907
Johannes Rydberg
1854-1919
William Henry
1775-1836
Johann Balmer
1825-1898
J. J. Thomson
1856-1940
Erwin Schodinger Louis de Broglie
1887-1961
(1892-1987)
Fitch Rule G3: Science is Referential
Jean Picard
1620-1682
Jacques Charles
1778-1850
Francois-Marie
Raoult
1830-1901
Heinrich R. Hertz,
1857-1894
Friedrich H. Hund
1896-1997
Daniel Fahrenheit
1686-1737
Max Planck
1858-1947
Rolf Sievert,
1896-1966
Blaise Pascal
1623-1662
Georg Simon Ohm
1789-1854
James Maxwell
1831-1879
Robert Boyle,
1627-1691
Isaac Newton
1643-1727
Michael Faraday
1791-1867
B. P. Emile
Clapeyron
1799-1864
Dmitri Mendeleev
1834-1907
Svante Arrehenius
Walther Nernst
1859-1927
1864-1941
Fritz London
1900-1954
Wolfgang Pauli
1900-1958
Johannes D.
Van der Waals
1837-1923
Marie Curie
1867-1934
Anders Celsius
1701-1744
Germain Henri Hess
1802-1850
J. Willard Gibbs
1839-1903
Fritz Haber
1868-1934
Thomas M Lowry
1874-1936
Werner Karl Linus Pauling Louis Harold Gray
1905-1965
Heisenberg 1901-1994
1901-1976
Buffer Example 1 what is equilibrium pH of a solution of 1.0
M HF, and 1.0 M NaF? Ka HF = 7.2x10-4
Do we have linked WA and WB both present?
_
HFaq H2 Ol
H
O
F
3 aq
aq
pH pKa
Yes = buffer
A
pH pKa log
HA
F
pH pKa log
HF
.
10
pH pKa log
.
10
pH pKa log1
pH pKa 0
Ka=7.2x10-4
pH log7.2x104
pH log7.2x104 314
.
In preceding module 17B we calculated the pH of
A solution of 1.0 M HF and found it to be
pH 157
.
What causes the difference?
LeChatlier’s Principle
HFaq H2 Ol
H3Oaq Faq_
HF push to right
pH 157
.
NaFaq H2 Ol Faq Naaq
complete
HFaq H2 Ol
H3Oaq Faq_
HF push to right
pH 314
.
Effect of added NaF is to reduce the ionization of HF
Buffer Example 2:What is the pH of 1.0 M H2CO3 in
the presence of 1.0 M NaHCO3
What is in solution? Are the chemical species linked by an equilibrium
reaction?
H2 CO3,aq H2 O
HCO
H
O
3,aq
3 aq
Ka1 4.4 x10
Solution contains a weak acid in the presence of it’s linked
(conjugate) weak base
pH 6.36 log1
A
pH pKa log
HA
pH 6.36 0 6.36
1M NaHCO3
pH log(4.4 x10 ) log
1M H2 CO3
7
7
Buffer Example 3:What is the pH of a solution
containing 0.25 M NH3 (Kb = 1.8x10-5) and 0.40 M
NH4Cl?
What is in solution? Are the chemical species linked by an equilibrium
reaction?
5
Kb 18
. x10
NH3,aq H2 O NH4 aq OHaq
or
K
14
14
10
w
w
K
10
10
w
K
5556
.
x
10
a
Kaa Kb 18
55
.
x
10
Kbb 18
. x10
NH4aq H2 O
NH3,aq H3 Oaq
Solution contains a weak acid in the presence of it’s linked
(conjugate) weak base
A
pH pKa log
HA
0.25 M NH
3,aq
10
pH log(5.55x10 ) log
0.40 M NH
4 ,aq
0.25
pH 9.25 log
0.4
pH 9.25 0.204 9.05
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
4 Kinds of Problems
Reviewed
We now know how to do 4 types of problems
Limiting Reagent must involve SA or SB
Which reagent
is completely
consumed?
Which remains?
HClaq NaOH Claq H2 Oaq Naaq
completely , Limiting reagent
HAaq NaOH Aaq H2 Oaq Naaq
completely , Limiting reagent
Naaq
Aaq HCl
HAaq Claq Naaq
completely , Limiting Re agent
WA
HAaq H2 O
Aaq H3 Oaq
Ka
x x 10 x
HA HA x HA ,
H3 Oaq Aaq
7
Equilibrium
aq ,eq
2
aq init
aq ,init
Aaq H2 O
OH
aq HAaq
WB
Kb
OH aq HAaq ,eq
A
Aaq H2 O
OHaq HAaq
WA +conjugate
HA
H
O
A
H
O
aq
2 aq
3 aq
(linked) WB
aq ,eq
x x 10 7
x2
A x A
aq ,init
aq ,init
A
A init
eq
pK log
pH pKa log
a
HA
HA
init
eq
To refresh your memory on Limiting Reagent Problems
Calculate the concentration of Na+, Cl-, CH3COO-, and CH3COOH in solution when
10.0 mL of 1.0 M HCl is added to 6.0 mL of 2.0 M NaAcetate acid (NaCH3COO).
Each solution is obtained from made from a stock solutions at 1 atm pressure
What do we know
10.0 mL 1.0 M HCl
5.0 mL 2.0 M NaCH3COO
1 atm
What do we want
What is a red herring?
Conc.
Classify the chemical substances added to solution:
Strong Acid (SA) Protonated low q/r anion (No Clean Socks) HNO3, HCl, H2SO4
Strong Base (SB) OH +low q/r Cation (Group 1 and 2) NaOH, KOH, Ca(OH)2…
Strong electrolyte (SE) Anion and Cation, low q/r
NaCl, KNO3….
Weak Acid (WA)
Protonated hi q/r anion (Oh Card me PleaSe) H2CO3…..
Weak Base (WB)
Contains R group, anion hi q/r with cation low q/r Na2CO3
Other or unknown (OU)
To refresh your memory on Limiting Reagent Problems
Calculate the concentration of Na+, Cl-, CH3COO-, and CH3COOH in solution when
10.0 mL of 1.0 M HCl is added to 6.0 mL of 2.0 M NaAcetate acid (NaCH3COO).
Each solution is obtained from made from a stock solutions at 1 atm pressure
mL M mmoles
SA/WB
Determine the Limiting Reagent
completely , Limiting Re agent
Naaq
Aaq HCl
HAaq Claq Naaq
HCl can produce
10
. moleHCl 1moleH 1moleCH3COOH
10.0mLHCl 1L 1mole 1mole 10mmolesCH3COOH
HCl
HCl
H
WB can produce
Haq CH3COOaq
CH3 COOHaq
completely , Limiting Re agent
6.0mL
NaCH3COOl
2.0mole NaCH3COO 1moleCH3COO 1moleCH3COOH
12mmoles
CH3COOH
1LNaCH3COO 1mole NaCH3COO 1moleCH3COO
SA (HCl) is limiting reagent, completely consumed, 0mmoles
WA formed is 10 mmoles
How much WB remains?
To refresh your memory on Limiting Reagent Problems
Calculate the concentration of Na+, Cl-, CH3COO-, and CH3COOH in solution when
10.0 mL of 1.0 M HCl is added to 6.0 mL of 2.0 M NaAcetate acid (NaCH3COO).
Each solution is obtained from made from a stock solutions at 1 atm pressure
SA/WB
Haq CH3COOaq
CH3 COOHaq
completely , Limiting Re agent
SA (HCl) is limiting reagent, completely consumed, 0mmoles
WA formed is 10 mmoles
WB initial 12 mmoles; WB consumed:
10
. moleHCl 1moleH 1moleCH3COOH 1moleCH3COO
10mmolesCH COO
10.0mLHCl 1L 1mole 1mole 1mole
3
HCl
HCl
CH3COOH
H
Initial-consumed=12-10=2mmoles WB left
Concentrations after the limiting reagent reaction
CH COOH
10mmolesCH3COOH
CH COO
2.0mmolesCH3COOH
3
3
10.0mL 6.0mL
10.0mL 6.0mL
6mL 2 M
0.625 M
Na 10.0mL 6.0mL 0.75 M
0125
. M
Cl 10.0mL 6.0mL 0.625 M
10mL10
. M
To refresh your memory on Limiting Reagent Problems
Concentrations
CH COOH
10mmolesCH3COOH
CH COO
2.0mmolesCH3COOH
3
3
10.0mL 6.0mL
10.0mL 6.0mL
6mL 2 M
0.625 M
Na 10.0mL 6.0mL 0.75 M
0125
. M
Cl 10.0mL 6.0mL 0.625 M
10mL10
. M
In the preceding problem what kind of equilibrium problem remains?
You have 3 choices:
WA
WB
WB and its conjugate WA (or WA and its conjugate WB)
We have present a weak acid (WA) and it’s linked (conjugate) weak base (WB)
. M
CH COO 0125
CH COOH 0.625M
3
3
Buffer equilibrium problem
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
A feast of titrations
We can combine Limiting
reagent problems followed
by an equilibrium problem
to do a titration
Titrations allow us to determine
the conc of an unknown
Titrations involve 1 of 3 LR followed by 1 of 3 Eq
Limiting Reagent must involve SA or SB
Which reagent
is completely
consumed?
Which remains?
HClaq NaOH Claq H2 Oaq Naaq
completely , Limiting reagent
HAaq NaOH Aaq H2 Oaq Naaq
completely , Limiting reagent
Naaq
Aaq HCl
HAaq Claq Naaq
completely , Limiting Re agent
WA
HAaq H2 O
Aaq H3 Oaq
Ka
x x 10 x
HA HA x HA ,init
H3 Oaq Aaq
7
Equilibrium
aq ,eq
2
aq
aq ,init
Aaq H2 O
OH
aq HAaq
WB
Kb
x2 x K 107 K Init 0
OH aq HAaq ,eq
A
aq ,eq
x x 10 7
x2
A x A
aq ,init
aq ,init
Aaq H2 O
OHaq HAaq
WA +conjugate
(linked) WB
HAaq H2 O
A
H
O
aq
3 aq
A
A init
eq
pK log
pH pKa log
a
HA
HA
init
eq
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
Main Dish: Limiting Reagent Problem
x 10 7 ?
CH3COOH OH CH3COO H2 O
x 02
. ?
1mmole
1mmole
CHCH
3COO
3COO
0M
.20
M
40
mL
0.020
.20
M
40
40
mL
mL
8
mmoleCH
COO
acetic
acid
acetic
acid
acetic
acetic
acid
acid
acetic
acetic
acid
acid
3
1mmole
1 mmole
CHCH
3COOH
3COOH
1mmoleCH3COO
0.40 M NaOH 0mLNaOH 1mmole 0mmoleCH3COO
NaOH
limiting
Solution contains CH3COOH
Sig fig, round to 0.2
Solution contains no NaOH
Solution contains no CH3COOKa
Side dish: WA
H O A
x x 10
x
HA HA x HA ,init
3
aq
aq
aq ,eq
7
aq ,init
2
.
x10
H x 1897
aq
Ka 18
. x105 ; try assumptions
18
. x10
5
x2
0.20
0.20
0.001897
019810263
.
18. x105 0.20
x 1897
.
x10 3
aq
3
pH log1897
. x10 3
pH 2.72
If you prefer –
do an ICE chart
Equilibrium Calculation.
Rx 1
H2O
H+
OH55.5
10-7
10-7
Rx 2
CH3CO2H
H+
CH3CO2init
0.200
10-7
0
change
-x
+x
+x
assume
x<<0.2
x>>10-7
equil
0.2
x
x
CH CO H 010
Q
2 ,init
3
init
CH CO H
3
2
init
7
0.2
K
Because rx goes to right
Sign of x is neg for reactants
Titrate 40 mL 0.20 acetic acid with 0.
40 M NaOH 0, 5, 10, 19, 20, 21,25 mL;
Ka = 1.8x10-5
Ka 18
. x105 ; try assumptions
r
18
. x10
check? yes.
5
x2
0.20
18. x105 0.20
x 1897
.
x10 3
pH log(189
. x10 3 ) 2.72
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL
pH
0
2.72
Main Dish: Limiting Reagent Problem
CH3COOH OH CH3COO H2 O
1mmoleCH3COO
0.40 M NaOH 5mLNaOH 1mmole 2.0mmoleCH3COO
NaOH
0.20 M CH3COOH 40mLCH3COOH
Limiting Reagent
1moleCH3COO
8.0mmoleCH3 COO
1moleCH3COOH
Solution contains 2.0 mmole CH3COO2.0mmoleCH COO
CH COO 40mL
3
CH3COOH
3
5mL NaOH
0.0444 M
2.0 mmole CH3COOH used to make 2 mmole CH3COO8.0mmole 2.0mmole
CH3COOH
01333
.
M
40mLCH3COOH 5mLNaOH
Side Dish: Buffer
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL
pH
0
2.72
CH3COOH OH CH3COO H2 O
5
4.27
2.0mmoleCH COO
CH COO 40mL
3
CH3COOH
CH3COOH
3
5mL NaOH
0.0444 M
8.0mmole 2.0mmole
01333
.
M
40mLCH3COOH 5mLNaOH
A
pH pKa log
HA
0.0444
pH log(18
. x10 ) log
.
01333
5
pH 4.74 0522
.
pH 4.27
Invoke Rule:
Chemists Are Lazy
mmolesA
total
mL
pH pKa log
mmolesHA
total mL
mmolesA
pH pKa log
mmolesHA
2
pH 4.74 log 4.27
6
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL pH
0 2.72
5 4.27
Main Dish: Limiting Reagent Problem
10 4.74
CH3COOH OH CH3COO H2 O
1moleCH3COO
0.40 M NaOH 10mLNaOH 1mole 4.0mmoleCH3COO
NaOH
0.20 M
CH3COOH
40mL
CH3COOH
Limiting Reagent
1moleCH3COO
8.0mmoleCH3 COO
1moleCH3COOH
Solution contains 4.0 mmole CH3COOSolution contains 8.0-4.0 mmole CH3COOH
mmolesA
pH pKa log
mmolesHA
4
pH 4.74 log
4.74 log 1 4.74
8
4
Side Dish: buffer
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL pH
0 2.72
5 4.27
Main Dish: Limiting Reagent Problem
10 4.74
19 6.02
CH3COOH OH CH3COO H2 O
1moleCH3COO
0.40 M NaOH 19mLNaOH 1mole 7.6mmoleCH3COO
NaOH
0.20 M
CH3COOH
40mL
CH3COOH
Limiting Reagent
1moleCH3COO
8.0mmoleCH3 COO
1moleCH3COOH
Solution contains 7.6 mmole CH3COO8 CH3COOH – 7.6 mmole OH = 0.4 mmole
mmolesA
pH pKa log
mmolesHA
7.6
7.6
pH 4.74 log
4
.
74
log
.
6.02
4.74 12787
04
8 7.6
Side Dish: buffer
A x10
Ka
7
HA x
x
0128
.
x 10 7 x
; pH 6.08
.00677 x
mmolesA
pH 4.77 log
6.04
mmolesHA
titration of acetic acid
14
12
Calculated pH
10
Difference between “exact” and non-exact
small
8
6
4
2
0
0
5
10
15
mL 0.400 NaOH
20
25
30
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL pH
0 2.72
5 4.27
Main Dish: Limiting Reagent Problem
10 4.74
19 6.02
CH3COOH OH CH3COO H2 O
1moleCH3COO
0.40 M NaOH 20mLNaOH 1mole 8mmoleCH3COO
NaOH
0.20 M
CH3COOH
40mL
CH3COOH
1moleCH3COO
8.0mmoleCH3 COO
1moleCH3COOH
Both Are
Limiting Reagents
USED UP
Solution contains 8 mmole CH3COO8 mmole CH3COOH-8 mmole OH = 0 mmole CH3COOH
Side Dish: acetate = WB
CH3COOaq H2 O
CH
COOH
OH
3
aq
aq
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL pH
0 2.72
5 4.27
Solution contains 8 mmole CH3COO10 4.74
19 6.02
CH3COOaq H2 O
CH
COOH
OH
3
aq
aq
20 8.93
CH COO
aq
3
Kb
8mmole
01333
.
40mL 20mL
x 01333
.
?
x 10 7 ???
HA OH
x x 10
x
A
A x A
aq ,eq
aq
aq ,eq
7
aq ,init
Kw
10 14
Kb
. x10 10
15 555
Ka 18
. x10
Kb “small”, assumps. Ok.
555
. x10 10
x2
01333
.
2
aq ,init
. x10 10 01333
.
~ x 8.59 x10 6
555
OH ~ x 859
. x10 6
pH 14 log8.59 x10 6 8.93
If you prefer – do an ICE chart
Calculate equilibrium
H2O
H+
OH55.5
10-7
10-7
CH3CO2- CH3CO2H OH
init conc:
0.133
0
10-7
change
-x
+x
+x
assume
(not much reaction to right, Kb small)
x << 0.133
x>> 10-7
equil
0.133
x
x
CH CO H OH 010
Q
K
3
2
init
CH CO
3
init
7
r
2 ,init
0.2
Sign of x for reactants is Titrate 40 mL 0.20 acetic acid with 0.
40 M NaOH 0, 5, 10, 19, 20, 21,25 mL
Kw
10 14
10
Kb
555
.
x
10
Ka 18
. x1015
Kb “small”, assumps. Ok.
555
. x10
10
x2
0133
.
. x10 10 0133
.
555
pH 14 pOH log(859
. x10 6 ) 8.93
x 8.59 x10 6
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL pH
0 2.72
5 4.27
Main Dish: Limiting Reagent Problem
10 4.74
19 6.02
CH3COOH OH CH3COO H2 O
20 8.93
1moleCH3COO
21 11.82
0.40 M NaOH 21mLNaOH 1mole 8.4mmoleCH3COO
NaOH
0.20 M
CH3COOH
40mL
CH3COOH
1moleCH3COO
8.0mmoleCH3 COO
1moleCH3COOH
Limiting Reagent
Side dish: seconds of the main
Excess OH
OH
OH
excess
excess
8.4 8
0.006557
40 20 1
p OH excess log 0.006557
Or
p OH excess 218
.
1mL 0.40 M
excess
40 20 1
0.006557
pH 14 pOH 14 2.18 1182
.
Titrate 40 mL 0.20 acetic acid with 0. 40 M NaOH 0, 5, 10, 19, 20, 21,25 mL; Ka
acetic acid = 1.8x10-5
mL pH
0 2.72
5 4.27
Main Dish: Limiting Reagent Problem
10 4.74
19 6.02
CH3COOH OH CH3COO H2 O
20 8.93
1moleCH3COO
21 11.82
0.40 M NaOH 25mLNaOH 1mole 10mmoleCH3COO
25 12.48
NaOH
0.20 M
CH3COOH
40mL
CH3COOH
1moleCH3COO
8.0mmoleCH3 COO
1moleCH3COOH
Limiting Reagent
Side dish: seconds of the main
Excess OH
OH
OH
excess
excess
10 8
0.030769
40 20 5
p OH excess log 0.030769
Or
p OH excess 1511
.
5mL 0.40 M
excess
40 20 5
0.030769
pH 14 pOH 14 1511
.
12.48
Defining some points on the Titration Curve
titration of acetic acid
14
Strong Base
Regions of A WEAK ACID titration curve
12
Buffer
Calculated pH
10
Weak Base
8
6
4
2
WeakAcid
0
0
5
10
15
20
25
mL 0.400 NaOH
½ way buffer
Tells us identity of acid
30
½ way to the equivalence point
aq
aq
HAaq OH A
½ of HA is converted to AmmoleHAinitial
mmoleHAremainng mmoleA formed
2
mmolesA
pH pKa log
mmolesHA
pH pKa log1
pH pKa
pKa is a clue to the identity of the
acid
1
14
14
14
2
eq pt ; pH pKa
Titrate 50 mL 1.0 M WA with
1.0 M NaOH
12
12
12
Clue
I.D. 101010
Of acid
pH
pH
pH
888
666
444
222
000
000
10
10
10
20
20
20
30
30
30
Valenine RCOOH; pKa 2.30
HF ; pKa 314
.
40
40
50
50
60
60
40
50
60
mL
mL
base
base
added
added
mL
base
added
70
70
70
80
80
80
CH3COOH; pKa 4.74
NH4 ; pKa 9.255
90
90
90
100
100
100
Defining some points on the Titration Curve
titration of acetic acid
14
Strong Base
Regions of A WEAK ACID titration curve
12
Buffer
Calculated pH
10
Weak Base
8
6
4
2
WeakAcid
0
0
5
10
15
20
mL 0.400 NaOH
½ way buffer
Eq. pt.
25
30
This is what
Tells us the conc.
Titrate __mL of 1.0 M Acetic Acid with 1.0 M NaOH
13 25
14
14
50
75
100
125
12
12
10
10
pH
pH
8
6
4
2
0
8
6
Observation 1?
Observation 2?
4
2
0
0
0
20
20
40
40
60
60
80
100
120
80
100
120
mL strong base added
mL strong base added
You should have at least 2 observations
What are they?
140
140
160
160
180
180
200
200
We found the equivalence point (large pH change) occurred when
we added 20 mL of 0.40 M NaOH to 40 mL of an unknown conc
of acetic acid. What was the original concentration of the acetic
acid?
mmole titrant
eq . pt
mmole titrated eqpt
or
20mL 0.40 M 40mL x
x
20mL 0.40 M
40mL
x 020
. M
OJO, not
pH pKa
V M V M
20 0.40 40 M
20 0.40
M
mmoleA mmoleHA
40
0.2
Be sure to account for
Multiple protons or
hydroxides
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
Indicators
Choose an Indicator so there will be a color change at the equivalence
point
titration of acetic acid
14
Strong Base
Regions of A WEAK ACID titration curve
12
Calculated pH
10
Buffer
8.93
Weak Base
8
6
4
2
WeakAcid
0
0
5
10
15
20
mL 0.400 NaOH
½ way buffer
Eq. pt.
25
30
How can we “see” the pH jump so we know where the end point is?
Indicators:
plum juice (tannic acid); red wine
H(tannic)
HIn
pink
HO
H+ + Ingreen
HO
OH
HO
HO
OH
HO
OH
HO
OH O
O
OH
O
O
O
O
O
OH
HO
OH
HO
O
O
O
O
O
HO
O
O
O
O
O
O
OH
OH
O
OH
HO
HO
O
HO
HO
OH O
HO
OH
O
HO
OH
OH
OH
O
OH O
OH
OH
HO
OH
O
OH
O
O
O
O
OH
HO
O
OH
O
O
O
HO
OH
O
O
OH
O
O
HO
OH
O
O
OH O
O
OH
O
Remove
protons
OH
OH
HO
OH
Connects electrons through ring,
Core structure= cyanidin
Blueberries
Raspberries
Cranberries
Red cabbage
Red wines
Red cabbage primarily
http://antoine.frostburg.edu/chem/senese/101/features/water2wine.shtml
CAS 528-58-5
http://www.uni-regensburg.de/Fakultaeten/nat_Fak_IV/Organische_Chemie/Didaktik/Keusch/p26_anth-e.htm
Hydrangea flower color based on available aluminum
Cation in the soil
Indicators:
plum juice (tannic acid)
HIn
pink
H In
H+
+
Ingreen
Ka
H
Ka
HIn
Ka
H
In
HIn
moles green
total vol
moles green
moles pink
moles pink
total vol
Observed color? When is it green vs pink?
Ratio: 10 Green/1 Pink
Ratio: 10 Pink/1Green
Observed color? depends on mole ratio
Rule of thumb (10/1 or 1/10)
Ka
10 moles green
green
H moles pink
pKa ( log10) p H
Ka
H
moles green
pink
10 moles pink
log10 pKa pH
Ka
H
10
pHgreen pKa 1
10Ka H
pH pink pKa 1
pHcolor change pKa ,indicator 1
pH pKa 1
Common Indicators (besides grape juice)
Name
pHcolor change = pKa +/- 1
methyl violet
thymol blue
bromophenol blue
methyl red
phenol red
bromothymol blue
phenolphthalein
alizarin yellow R
0-2
1-3
3-5
4.5-6.5
6.5-8
6-8
8-10
10-12
pKa
5
7.1
9
Change centered over pKa
Color change over 2 pH units
Common Indicators (besides grape juice)
Name
methyl violet
thymol blue
bromophenol blue
methyl red
phenol red
bromothymol blue
phenolphthalein
alizarin yellow R
pHcolor change = pKa +/- 1
0-2
1-3
3-5
4.5-6.5
6.5-8
6-8
8-10
10-12
pKa
Biggest pH change in our calculation
was centered at pH 8.93
5
7.1
9
Name
pHcolor change = pKa +/- 1
methyl violet
thymol blue
bromophenol blue
methyl red
phenol red
bromothymol blue
phenolphthalein
alizarin yellow R
Titrate 40 mL 0.20 acetic acid with 0.
40 M NaOH 0, 5, 10, 19, 20, 21,25 mL
0-2
1-3
3-5
4.5-6.5
6.5-8
6-8
8-10
10-12
pKa
5
7.1
9
Can omit for BLB
Choose an Indicator so there will be a color change at the equivalence
point
titration of acetic acid
14
12
Calculated pH
10
8
6
4
2
0
0
5
10
15
20
mL 0.400 NaOH
½ way buffer
Eq. pt.
25
30
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
Two more example titrations
WB/SA
SA/SB
A quick and dirty (WA/SB) titration curve.
mL added
problem
WA
0
1/2 to equivalence pt buffer
WB
equivalence pt
after equivalence pt SB
pH
<pKa
pKa
>7
Can you predict how a WB/SA
titration curve will work out?
Example Titration 2
titrate WB with SA
mL added
problem
0
WB
1/2 to equivalence pt buffer
equivalence pt
WA
after equivalence pt
SA
pOH
<pKb
pKb
pH
>pKa
=pKa
<7
Kb 18
. x105
Example titrate 50 mL 0.1 M NH3 0.2 M HCl
quick and dirty: 0 mL, 1/2 equivalence
point, 1 mL before eq. pt., eq. pt., 1 ml after
0 mL HCl added; WB
equilibrium chart
mL pH
0 11.13
NH3 + H2O NH4+ + OHinit. conc.
0.1
0
10-7
change
-x
+x
+x
assume? Kb = 1.8x10-5, not much reaction, yes
0.1> x
x>10-7
equil.
0.1
x
x
NH
OH
4,init init 0107
5
Q
NH
3,init
Kb 18
. x10 5
x 10 7 x
01
. x
18. x105 01. x 2
01
.
x2
01
.
Kb 18
. x10
x
18. x105 01.
x 134
. x10 3
pOH log134
. x10 3 287
.
pH 14 pOH 1113
.
need to know eq. pt.
50mL01
. MNH3 x 0.2 MHCl
mL
0
12.5
x 25mLeq pt
25mL
1
12.5mL
2 eq. pt .
2
pH
11.13
9.25
Kb, NH3 18
. x105
pKb log18
. x105 4.744
pH1/ 2 eq. pt pKa
14 pKa 4.744
Kw
K w Ka Kb ; Ka
Kb
OR
pH1/ 2 eq. pt pKa 9.25
In case you are wondering?
14 pKa pKb
pOH1/ 2 eq. pt pKb 4.7447
pKa 9.25
14 pOH1/ 2 eq. pt pH 14 4.744 9.25
Example titrate 50 mL 0.1 M NH3 0.2 M HCl; include 1 mL and 1 mL after eq.pt.
Eq pt = 25 mL; pKa=9.25 (from preceding slide)
1 mL before eq. pt = 24mL.; LR prob
4.8 mmoles NH4+
Equilibrium prob?
0.2 mmoles NH3
Buffer
0.20 M 24mL 4.8mmoleH
HCl
HCl
pH
11.13
9.25
7.86
added 4.8mmolesHAformed
50mL 010
. M NH 4.8mmoles 0.2mmoles A- remaining
3
mL
0
12.5
24
pKa 9.25
mmolesA
pH pKa log
mmolesHA
0.2
pH 9.25 log
4.8
pH 9.25 138
. 7.86
Example titrate 50 mL 0.1 M NH3 0.2 M HCl; include 1 mL and 1 mL after eq.pt.
Eq. pt. Problem; WA
NH4+
NH3 + H+
init conc .066
0
10-7
change
-x
+x
+x
Ka = 10-14/(1.8x10-5) = 5.5x10-10
Assump? 0.066>>x
x~10-7
equil
0.066
x
x+10-7
7
7 2
10 14
10 10 41 3.66 x10 11
10
Ka
. x10
5 55
x
18
. x10
21
7
7
x
10
x
x
10
x
10
10 7 10 14 146
. x10 10
55
. x10
x
0.66 x
0.66
2
10
7
2
55. x10 0.66 10 x x
10 7 121
. x10 5
x
. x1011 10 7 x x 2
366
2
7
x 10 x 3.66x10
2
11
0
x 6 x10
6
pH log6x10 6 522
.
Eq pt = 25 mL; pKa=9.25 (from preceding slide)
1 mL past eq. pt.; 26 mL; SA
50mL 01
. M NH / NH
3
1mL
50 25 1
excess
0.2 M
50 25 1
HCl
4
mL
0
12.5
24
25
26
5mmole
[ NH4 ]
76mL
pH
11.13
9.25
7.86
5.22
2.5
2.63x10 3 M [ H ]
H+
conc. SA = conc.
=
pH = -log(2.63x10-3)
pH = 2.5
OR, limiting reagent
2.63x10-3
Limiting
Reagent
26mL 0.2 M 52mmoleNH
50mL 01. M 50mmoleNH
s
HCl
s
HCl
2mmole excess H
2mmole
2.63x10 3
50 25 1
Example titrate 50 mL 0.1 M NH3 0.2 M HCl; include 1 mL and 1 mL after eq.pt.
4
4
5 mL past eq. pt.
5mL 0.2 M
excess
50 25 5
125
. x10 2 M [ H ]
conc. SA = conc. H+ = 1.25x10-2
pH =-log(1.25x10-2)
pH=1.9
mL
0
12.5
24
25
26
30
pH
11.13
9.25
7.86
5.22
2.5
1.9
50 mL 0.1 NH3 titrated with 0.2 M HCl
12
10
buffer
WB
pH
8
1/2 eqpt
6
WA
4
2
eq pt SA
0
0
5
10
15
mL HCl
Choose an indicator?
20
25
30
Common Indicators (besides grape juice)
Name
pHcolor change = pKa +/- 1
methyl violet
0-2
thymol blue
bromophenol blue
methyl red
phenol red
bromothymol blue
phenolphthalein 8-10
alizarin yellow R 10-12
1-3
3-5
4.5-6.5
6.5-8
6-8
pKa
Biggest pH change is near 5.5
5
7.1
9
Example Titration 3: We have 25.0 mL of 0.200 M
HNO3. What will be the pH after we add 0, 20, 49,
50, 51, 75, 100 mL of 0.100 M NaOH
Main Course: SA/SB
Mmole
HNO3
init
0.20 M 25mL
mL
OH
added
Side courses: more of same
Mmoles Mmole H+
excess
OH
added
010
. M mL
Mmole
OH excess
Total Vol
[H+]
Or
[OH-]
5
0
0
5-0=5
0
25+0
5/25=0.2
5
20
2
5-2=3
0
25+20=45
3/45=0.066
5
49
4.9
5-4.9=0.1
0
25+49=74
0.1/74=0.00135
5
50
5
5-5=0
0
25+50=75
H2O
5
51
5.1
5-5=0
5.1-5=0.1
25+51=76
0.1/76=0.00136
5
75
7.5
5-5=0
7.5-5=2.5
25+75=100
2.5/100=0.025
5
100
10
5-5=0
10-5=5
25+100=125
5/125=0.04
Example Titration 3: We have 25.0 mL of 0.200 M
HNO3. What will be the pH after we add 0, 20, 49,
50, 51, 75, 100 mL of 0.100 M NaOH
Main Course: SA/SB
Side courses: more of same
[H+]
Or
[OH-]
5/25=0.2
pH=-log(0.2)=0.0698
3/45=0.066
pH=-log(0.066)=1.17
0.1/74=0.00135
pH=-log(0.00135)=3.17
H2O
pH=7
0.1/76=0.00136
pOH=-log(0.0013)=2.88
pH=14-pOH=11.12
2.5/100=0.025
pOH=-log(0.025)=1.602
pH=14pOH=12.398
5/125=0.04
pOH=-log(0.04)=1.39
pH=14-pOH=12.61
Titration of 50 mL 0.2 M HNO3
14
12
pH
10
Where is
largest pH?
What indicator
should we use?
8
6
4
2
0
0
20
40
ml 0.1 M NaOH
60
80
We have 25.0 mL of 0.200 M HNO3. What will be the pH after we add 0, 20, 49, 50, 51, 75, 100 mL of 0.100 M NaOH
Common Indicators (besides grape juice)
Name
pHcolor change = pKa +/- 1
methyl violet
0-2
thymol blue
bromophenol blue
methyl red
phenol red
bromothymol blue
phenolphthalein 8-10
alizarin yellow R 10-12
1-3
3-5
4.5-6.5
6.5-8
6-8
pKa
Biggest pH change is near 7
5
7.1
9
Color change defines large pH change
Titration of 50 mL 0.2 M HNO3
14
blue
12
SB
pH
10
8
6
SA
4
yellow
2
0
0
20
40
ml 0.1 M NaOH
60
80
We have 25.0 mL of 0.200 M HNO3. What will be the pH after we add 0, 20, 49, 50, 51, 75, 100 mL of 0.100 M NaOH
“A” students work
(without solutions manual)
~ 10 problems/night.
Dr. Alanah Fitch
Flanner Hall 402
508-3119
[email protected]
Office Hours Th&F 2-3:30 pm
Module #17C:
Buffering and Titrations
END
Tannins – represent linked cyanidins
Red wine - antioxidants
http://www.micro-ox.com/chem_tan.htm
Food Source Anthocyanins Glycoside form
apple
blueberry
cyanidin
malvidin
petuniclin
monoglycoside
monoglycoside
monoglycoside
delphinidin
monoglycoside
cranberry
cyanidin
peonidin
monoglycoside
monoglycoside
red cabbage
cyaniclin
diglycoside
strawberry
pelargonidin
monoglycoside
cyanidin
monoglycoside