ALCPG 2004 Winter Workshop January 8, 2004 Background Studies Takashi Maruyama SLAC OUTLINE • Pair background – Pair background in forward detector – High energy electron detection –
Download ReportTranscript ALCPG 2004 Winter Workshop January 8, 2004 Background Studies Takashi Maruyama SLAC OUTLINE • Pair background – Pair background in forward detector – High energy electron detection –
ALCPG 2004 Winter Workshop January 8, 2004 Background Studies Takashi Maruyama SLAC OUTLINE • Pair background – Pair background in forward detector – High energy electron detection – Radiation environment • Other backgrounds – Beam-gas scattering (Keller) – hadrons (Barklow) • Background in Central Tracker • Summary e+ e- Pairs from e+ e- Collisions With Current NLC IP Beam Parameters: # e+ or e- = 49,000/bunch <E> = 4.1 GeV E_total = 199,000 GeV <E> = 4.1 GeV 0.01 0.1 1 10 100 Energy (GeV) SiD Forward Masking, Calorimetry & Tracking 2003-06-01 0.5 5 Tesla 0.4 113mrad 0.3 Inst. Mask 0.2 W W 0.1 Pair-LuMon 46mrad QD0 0 LowZ Mask BeamPipe -0.1 Exit radius 2cm @ 3.5m W W -0.2 Support Tube -0.3 E C A L -0.4 HCAL YOKE -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 Pair Distribution Z = -315 cm Z = +315 cm e+ 5 Tesla 8 cm ≈ 25 mrad 20 mr crossing angle Y (cm) e- Head-on X (cm) Pair Energy vs. Beampipe Radius Crossing angle case: IN Beampipe radius = 1 cm LCD SiD Detector in GEANT 3 e+ x z 5 Tesla Field Map (not constant field) High Energy Electron Detection • • • • • Veto for ** is essential for SUSY searches (Colorado). Pair background is confined within 8 cm of the beamline at 5 Tesla. Veto capability to 25 mrad is relatively easy. Big question is whether we can detect high energy electrons inside the pair background DESY-Zeuthen group studied for TESLA, Drugakov (Amsterdam), Lohmann (Montpellier). High energy electrons can be detected inside the pair background, thus extending the veto capability to ~6 mrad. This is a first attempt at detecting high energy electrons for NLC. Lohmann High Energy Electron Detection in LUMON • Beampipe radius: IN 1 cm, OUT 2 cm • Detector: 50 layers of 0.2 cm W + 0.03 cm Si Zeuthen R- segmentation LUMON • Generate 200 bunches of pair backgrounds. OUT IN • Pick 10 BX randomly and calculate average BG in each cell, <E>background • Pick one BX background and generate one high energy electron. • EBG + Eelectron - <E>background, in each cell 11 cm • Apply electron finder. Pair Energy/bunch and RMS 300 2.0 2.5 3.0 3.5 4.5 250 - 2.5 cm - 3.0 cm - 3.5 cm - 4.0 cm - 5.0 cm Energy (GeV) 200 150 100 50 0 0 50 100 150 200 Phi (deg.) 250 300 350 High Energy Electron Detection 250 GeV Electron Deposited Energy (arb. Units) Pair Background BG 250 GeV e- Ebg + Eelectron - <Ebg> Si Layers Electron Detection Efficiency 100 6 2 GeV Y (cm) Detection Efficiency (%) 80 60 40 1 2 3 4 5 6 3 20 1 5 4 0 50 X (cm) 100 150 Energy (GeV) 200 250 Background Pileup What happens if we do not have single bunch time resolution? Fake rate: 1 bx 3.2% 2 11 3 22 4 41 30 Fake Rate (%) The detection efficiency does not degrade quickly, but the fake rake shoots up. 2.0 - 2.5 cm 2.5 - 3.0 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 40 20 10 0 1 2 3 4 No. of Bunches 5 6 7 Energy Flow and Radiation DOSE Rate • Study radiation environment for beam line elements. • Identify hot spots. IR Quads are 5.7 cm radius BNL SC magnet. Pair Energy Flow (e+e-, 20mrad X, SC Magnets) QDF1-A Detail Detector QDF1-A Escape LUMON QDF1-B QDF1-C PACMAN M2 QD0 LOWZ SD0 QF1 M1 Endcap MUON Instr. Mask S.S. Beampipe Be Beampipe Endcap EM Endcap HAD Barrel EM VXD TOTAL GeV 74909.1 57783.6 26265.8 11457.8 11113.7 10342.7 2983.87 2059.58 1286.89 555.73 364.764 166.624 40.964 0.466 0.271 0.196 0.164 0.146 0.117 0.08 199333 mW 276.4902 % 37.58% 213.2797 28.99% 96.94732 13.18% 42.29085 5.75% 41.02083 5.58% 38.17509 5.19% 11.01347 1.50% 7.601915 1.03% 4.749903 0.65% 2.051204 0.28% 1.346347 0.18% 0.615011 0.08% 0.151198 0.02% 0.00172 0.00% 0.001 0.00% 0.000723 0.00% 0.000605 0.00% 0.000539 0.00% 0.000432 0.00% 0.000295 0.00% 735.7383 100.00% Detector QDF1-A S.S. Beampipe S.S. BP cooling S.S. Coil support Inner Coil G10 support Inner Liq. He G10 Liq. He S.S. Coil support Outer Coil G10 support Outer Liq. He G10 Liq. He S.S. support Heat shield Cryostat shell Energy/bunch GeV 74909.1 14136.6 10457.6 15281.3 14939.7 1249.34 80.796 271.492 6307.23 7275.19 819.179 36.84 125.983 1563.19 376.997 1987.66 mW 276.4902 % 37.58% 52.17827 18.87% 38.5991 13.96% 56.40346 20.40% 55.14262 19.94% 4.611309 1.67% 0.298219 0.11% 1.002079 0.36% 23.28003 8.42% 26.85278 9.71% 3.023596 1.09% 0.135977 0.05% 0.465004 0.17% 5.76975 2.09% 1.391499 0.50% 7.336473 2.65% Max. DOSE Rate in QDF1 QDF1 examined in 7.5° , 2 cm z cells; maximum dose plotted Max. DOSE rate ~100 MRad/year Solenoid field sweeps e+e- pairs UP and DOWN. Max. DOSE Rate in LUMON and LOW-Z LOW-Z LUMON 6 1 4 1 1 26 34 40 42 44 36 24 16 32 30 38 Y (cm) 12 68 32 50 52 28 40 56 2 0 54 72 58 60 36 42 34 30 20 24 -2 3 8 -2 2 2 -6 -4 -2 0 6 5 6 -4 7 10 14 8 13 18 27 23 28 25 15 21 26 19 17 12 4 9 20 0 78 76 46 38 26 44 62 68 70 64 48 2 Y (cm) 2 29 16 22 11 10 14 22 28 1 18 4 4 8 2 4 X (cm) Max. DOSE rate ~70 Mrad/year -4 -3 -2 4 3 -1 X (cm) 0 1 2 Max. DOSE rate ~30 Mrad/year Other Backgrounds • • Particles reaching IP from beam-gas scattering (Keller) Bremsstrahlung #/train <E> (GeV) @ 1 nT Vacuum Electron 0.2 125 Photon 0.032 45 Coulomb Scattering Electron 0.036 250 ** Hadrons (Barklow) 56 events/train Energy Flow from hadrons and beam-gas hadrons Detector GeV Escape Endcap HAD PACMAN M1 Endcap EM M2 LUMON Endcap MUON Instr. MASK Barrel EM QDF1-A QD0 Barrel HAD LOW-Z SD0 Ext. Beampipe 27322.7 8107.22 3845.27 2458.65 1763.65 1723.7 1642.53 1607.65 1021.74 729.228 572.856 337.682 337.511 54.991 24.652 21.014 QF1 QDF1-B VXD Barrel MUON S.S. Beampipe Solenoid QDF1-C Be Beampipe TOTAL 20.814 16.292 13.393 6.758 4.376 2.953 2.734 2.171 51640.55 beam-gas Detector mW 0.5246 % 52.91% QDF1-A 0.1557 15.70% LUMON 0.0738 7.44% 0.0472 4.76% 0.0339 3.42% 0.0331 3.33% 0.0315 3.18% 0.0309 3.11% 0.0196 1.98% 0.014 1.41% 0.011 1.11% 0.0065 0.65% 0.0065 0.65% 0.0011 0.11% 0.0005 0.05% 0.0004 0.0004 0.0003 0.0003 0.0001 0.0001 0.0001 0.0001 0 0.9915 0.04% 0.04% 0.03% 0.03% 0.01% 0.00% 0.00% 0.00% 0.00% 100 PACMAN Escape BPEX QD0 M2 QDF1-B SD0 M1 QDF1-C Instr. Mask QF1 Endcap EM S.S. Beampipe VXD Barrel EM Be Beampipe Endcap MUON Endcap HAD TOTAL Energy/train GeV 39.902 mW 0.00077 % 62.50% 11.74 0.00022 18.4 4.3 3.126 1.654 0.877 0.867 0.451 0.308 0.179 0.143 0.117 0.06 0.035 0.012 0.006 0.006 0.005 0.005 0 63.794 0.00008 6.74% 0.00003 4.90% 0.00002 2.59% 0.00002 1.37% 0.00001 1.36% 0.00001 0.71% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0.0012 100.00% Background in Central Tracker ~8600 e+/e- / train hadrons 56 events / train Charged Particle Occupancy in Si Tracker Occupancy = #hits/train / # channels Si strip width = 50 µm Occupancy/Train (%) 1 0.1 Pairs (Forward) Pairs (Barrel) gg->hadrons (Forward) gg->hadrons (Barrel) gg->muons (Forward) gg->muons (Barrel) 0.01 0.001 1 2 3 Layer 4 5 Summary • High energy electron can be identified in the pair background if single bunch time resolution is achieved, extending the veto capability to ~7 mrad. • If multi-bunches are integrated, the fake rate becomes intolerable in ~3 bunches. • Radiation level is 70 Mrad/year; Radiation hard detector must be developed. • Energy flow analysis has not found any problems so far. • > 0.1% occupancies in the central tracker from pairs and ** events.