ALCPG 2004 Winter Workshop January 8, 2004 Background Studies Takashi Maruyama SLAC OUTLINE • Pair background – Pair background in forward detector – High energy electron detection –

Download Report

Transcript ALCPG 2004 Winter Workshop January 8, 2004 Background Studies Takashi Maruyama SLAC OUTLINE • Pair background – Pair background in forward detector – High energy electron detection –

ALCPG 2004 Winter Workshop
January 8, 2004
Background Studies
Takashi Maruyama
SLAC
OUTLINE
• Pair background
– Pair background in forward detector
– High energy electron detection
– Radiation environment
• Other backgrounds
– Beam-gas scattering (Keller)
–   hadrons (Barklow)
• Background in Central Tracker
• Summary
e+ e- Pairs from e+ e- Collisions
With Current NLC IP Beam
Parameters:
# e+ or e- = 49,000/bunch
<E> = 4.1 GeV
E_total = 199,000 GeV
<E> = 4.1 GeV
0.01
0.1
1
10
100 Energy (GeV)
SiD Forward Masking, Calorimetry & Tracking 2003-06-01
0.5
5 Tesla
0.4
113mrad
0.3
Inst.
Mask
0.2
W
W
0.1
Pair-LuMon
46mrad
QD0
0
LowZ Mask
BeamPipe
-0.1
Exit radius
2cm @ 3.5m
W
W
-0.2
Support
Tube
-0.3
E
C
A
L
-0.4
HCAL
YOKE
-0.5
0
0.5
1
1.5
2
2.5
3
3.5
4
Pair Distribution
Z = -315 cm
Z = +315 cm
e+
5 Tesla
8 cm ≈ 25 mrad
20 mr crossing
angle
Y (cm)
e-
Head-on
X (cm)
Pair Energy vs. Beampipe Radius
Crossing angle case:
IN Beampipe radius = 1 cm
LCD SiD Detector in GEANT 3
e+
x
z
5 Tesla Field Map (not constant field)
High Energy Electron Detection
•
•
•
•
•
Veto for ** is essential for
SUSY searches (Colorado).
Pair background is confined within
8 cm of the beamline at 5 Tesla.
Veto capability to 25 mrad is
relatively easy.
Big question is whether we can
detect high energy electrons
inside the pair background
DESY-Zeuthen group studied for
TESLA, Drugakov (Amsterdam),
Lohmann (Montpellier).
High energy electrons can be
detected inside the pair
background, thus extending the
veto capability to ~6 mrad.
This is a first attempt at
detecting high energy electrons
for NLC.
Lohmann
High Energy Electron Detection in LUMON
• Beampipe
radius: IN 1 cm, OUT 2 cm
• Detector:
50 layers of 0.2 cm W + 0.03 cm Si
Zeuthen R- segmentation
LUMON
• Generate 200 bunches of pair
backgrounds.
OUT
IN
• Pick 10 BX randomly and calculate
average BG in each cell, <E>background
• Pick one BX background and
generate one high energy electron.
• EBG + Eelectron - <E>background, in each cell
11 cm
• Apply electron finder.
Pair Energy/bunch and RMS
300
2.0
2.5
3.0
3.5
4.5
250
- 2.5 cm
- 3.0 cm
- 3.5 cm
- 4.0 cm
- 5.0 cm
Energy (GeV)
200
150
100
50
0
0
50
100
150
200
Phi (deg.)
250
300
350
High Energy Electron Detection
250 GeV Electron
Deposited Energy (arb. Units)
Pair Background
BG
250 GeV e-
Ebg + Eelectron - <Ebg>
Si Layers
Electron Detection Efficiency
100
6
2
GeV
Y (cm)
Detection Efficiency (%)
80
60
40
1
2
3
4
5
6
3
20
1
5
4
0
50
X (cm)
100
150
Energy (GeV)
200
250
Background Pileup
What happens if we do not have
single bunch time resolution?
Fake rate:
1 bx
3.2%
2
11
3
22
4
41
30
Fake Rate (%)
The detection efficiency
does not degrade quickly,
but the fake rake shoots up.
2.0 - 2.5 cm
2.5 - 3.0
3.5 - 4.0
4.0 - 4.5
4.5 - 5.0
40
20
10
0
1
2
3
4
No. of Bunches
5
6
7
Energy Flow and Radiation DOSE Rate
• Study radiation environment
for beam line elements.
• Identify hot spots.
IR Quads are 5.7 cm radius
BNL SC magnet.
Pair Energy Flow
(e+e-, 20mrad X, SC Magnets)
QDF1-A Detail
Detector
QDF1-A
Escape
LUMON
QDF1-B
QDF1-C
PACMAN
M2
QD0
LOWZ
SD0
QF1
M1
Endcap MUON
Instr. Mask
S.S. Beampipe
Be Beampipe
Endcap EM
Endcap HAD
Barrel EM
VXD
TOTAL
GeV
74909.1
57783.6
26265.8
11457.8
11113.7
10342.7
2983.87
2059.58
1286.89
555.73
364.764
166.624
40.964
0.466
0.271
0.196
0.164
0.146
0.117
0.08
199333
mW
276.4902
%
37.58%
213.2797
28.99%
96.94732
13.18%
42.29085
5.75%
41.02083
5.58%
38.17509
5.19%
11.01347
1.50%
7.601915
1.03%
4.749903
0.65%
2.051204
0.28%
1.346347
0.18%
0.615011
0.08%
0.151198
0.02%
0.00172
0.00%
0.001
0.00%
0.000723
0.00%
0.000605
0.00%
0.000539
0.00%
0.000432
0.00%
0.000295
0.00%
735.7383
100.00%
Detector
QDF1-A
S.S. Beampipe
S.S. BP cooling
S.S. Coil support
Inner Coil
G10 support
Inner Liq. He
G10 Liq. He
S.S. Coil support
Outer Coil
G10 support
Outer Liq. He
G10 Liq. He
S.S. support
Heat shield
Cryostat shell
Energy/bunch
GeV
74909.1
14136.6
10457.6
15281.3
14939.7
1249.34
80.796
271.492
6307.23
7275.19
819.179
36.84
125.983
1563.19
376.997
1987.66
mW
276.4902
%
37.58%
52.17827
18.87%
38.5991
13.96%
56.40346
20.40%
55.14262
19.94%
4.611309
1.67%
0.298219
0.11%
1.002079
0.36%
23.28003
8.42%
26.85278
9.71%
3.023596
1.09%
0.135977
0.05%
0.465004
0.17%
5.76975
2.09%
1.391499
0.50%
7.336473
2.65%
Max. DOSE Rate in QDF1
QDF1 examined in
7.5° , 2 cm z cells;
maximum dose plotted
Max. DOSE rate ~100 MRad/year
Solenoid field sweeps e+e- pairs
UP and DOWN.
Max. DOSE Rate in LUMON and LOW-Z
LOW-Z
LUMON
6
1
4
1
1
26
34
40 42
44 36
24 16 32
30 38
Y (cm)
12
68 32
50
52 28
40
56
2
0
54
72
58 60
36 42 34 30
20
24
-2
3
8
-2
2
2
-6
-4
-2
0
6
5
6
-4
7
10
14
8 13 18
27 23
28
25
15 21 26 19
17 12
4
9
20
0
78
76
46 38
26
44
62
68
70
64
48
2
Y (cm)
2
29 16
22 11
10
14
22
28
1
18
4
4
8
2
4
X (cm)
Max. DOSE rate ~70 Mrad/year
-4
-3
-2
4
3
-1
X (cm)
0
1
2
Max. DOSE rate ~30 Mrad/year
Other Backgrounds
•
•
Particles reaching IP from beam-gas scattering (Keller)
Bremsstrahlung
#/train <E> (GeV) @ 1 nT Vacuum
Electron
0.2
125
Photon
0.032
45
Coulomb Scattering
Electron
0.036 250
** Hadrons (Barklow)
56 events/train
Energy Flow from
hadrons and beam-gas
hadrons
Detector
GeV
Escape
Endcap HAD
PACMAN
M1
Endcap EM
M2
LUMON
Endcap MUON
Instr. MASK
Barrel EM
QDF1-A
QD0
Barrel HAD
LOW-Z
SD0
Ext. Beampipe
27322.7
8107.22
3845.27
2458.65
1763.65
1723.7
1642.53
1607.65
1021.74
729.228
572.856
337.682
337.511
54.991
24.652
21.014
QF1
QDF1-B
VXD
Barrel MUON
S.S. Beampipe
Solenoid
QDF1-C
Be Beampipe
TOTAL
20.814
16.292
13.393
6.758
4.376
2.953
2.734
2.171
51640.55
beam-gas
Detector
mW
0.5246
%
52.91%
QDF1-A
0.1557
15.70%
LUMON
0.0738
7.44%
0.0472
4.76%
0.0339
3.42%
0.0331
3.33%
0.0315
3.18%
0.0309
3.11%
0.0196
1.98%
0.014
1.41%
0.011
1.11%
0.0065
0.65%
0.0065
0.65%
0.0011
0.11%
0.0005
0.05%
0.0004
0.0004
0.0003
0.0003
0.0001
0.0001
0.0001
0.0001
0
0.9915
0.04%
0.04%
0.03%
0.03%
0.01%
0.00%
0.00%
0.00%
0.00%
100
PACMAN
Escape
BPEX
QD0
M2
QDF1-B
SD0
M1
QDF1-C
Instr. Mask
QF1
Endcap EM
S.S. Beampipe
VXD
Barrel EM
Be Beampipe
Endcap MUON
Endcap HAD
TOTAL
Energy/train
GeV
39.902
mW
0.00077
%
62.50%
11.74
0.00022
18.4
4.3
3.126
1.654
0.877
0.867
0.451
0.308
0.179
0.143
0.117
0.06
0.035
0.012
0.006
0.006
0.005
0.005
0
63.794
0.00008
6.74%
0.00003
4.90%
0.00002
2.59%
0.00002
1.37%
0.00001
1.36%
0.00001
0.71%
0
0.00%
0
0.00%
0
0.00%
0
0.00%
0
0.00%
0
0.00%
0
0.00%
0
0.00%
0
0.00%
0
0.00%
0
0.00%
0
0.00%
0.0012
100.00%
Background in Central Tracker
~8600 e+/e- / train
 hadrons 56 events / train
Charged Particle Occupancy in Si Tracker
Occupancy = #hits/train / # channels
Si strip width = 50 µm
Occupancy/Train (%)
1
0.1
Pairs (Forward)
Pairs (Barrel)
gg->hadrons (Forward)
gg->hadrons (Barrel)
gg->muons (Forward)
gg->muons (Barrel)
0.01
0.001
1
2
3
Layer
4
5
Summary
• High energy electron can be identified in the pair
background if single bunch time resolution is
achieved, extending the veto capability to ~7 mrad.
• If multi-bunches are integrated, the fake rate
becomes intolerable in ~3 bunches.
• Radiation level is 70 Mrad/year; Radiation hard
detector must be developed.
• Energy flow analysis has not found any problems so
far.
• > 0.1% occupancies in the central tracker from pairs
and ** events.