7.4 Trigonometric Functions of General Angles What if the angle is not acute?

Download Report

Transcript 7.4 Trigonometric Functions of General Angles What if the angle is not acute?

7.4
Trigonometric Functions
of General Angles
What if the angle is not acute?
Let  be any angle in standard position, and
let a , b denote the coordinates of any point,
except the origin (0, 0), on the terminal side
of  . If r  a  b denotes the distance from
(0, 0) to (a , b), then the six trigonometric
functionsof  are defined as the ratios
sin   b r
cos  a r
tan   b a
csc  r b
sec  r a
cot   a b
2
2
provided no denominator equals 0.
y

r
(a, b)
x
Find the exact value of each of the six
trigonometric functions of a positive angle 
if (-2, 3) is a point on the terminal side.
y
(-2, 3)

x
a  2, b  3
r  a 2  b2  ( 2) 2  32  13
b
3 3 13
sin   

r
13 13
r
13
csc  
b
3
a  2  2 13
r
13
cos  

sec   
a
2
r
13
13
b 3
3
tan  

a 2
2
a
2
cot    
b
3
y
r 1
P= (1, 0)
P= (a, b)
x
b 0
sin 0  sin 0    0
r 1
a 1
cos 0  cos 0    1
r 1
b 0
tan 0  tan 0    0
a 1
r 1
csc 0  csc 0  
b 0
r 1
sec 0  sec 0    1
a 1
a 1
cot 0  cot 0  
b 0
sin
y
cos
2

tan
P= (0,1)


x
2

csc
sec
cot
2

2

2

2
 sin 90
 cos 90
 tan 90
 csc 90
 sec 90
 cot 90
b 1
  1
r 1
a 0
  0
r 1
b 1
 
a 0
r 1
  1
b 1
r 1
 
a 0
a 0
  0
b 1
180 ( radians)
270 (3 2 radians)
sin 
0
1
cos
tan 
1
0
0
Not defined
csc
Not defined
1
sec
1
Not defined
cot 
Not defined
0
y
a < 0, b > 0, r > 0
a > 0, b > 0, r > 0

r
x
(a, b)
a < 0, b < 0, r > 0
a > 0, b < 0, r > 0
y
II  ,  
sin   0, csc  0
All others negative
III  ,  
tan   0, cot   0
All others negative
I (+, +)
All positive
IV  ,  
x
cos  0, sec  0
All others negative
y
II  ,  
I (+, +)
Students
All
( Sin )
III  ,  
(All functions)
IV  ,  
Take
Care
( Tangent )
( Cosine )
x
Two angles in standard position
are said to be co-terminal if they
have the same terminal side.
y

x

Let  denote a non-acute angle that
lies in a quadrant. The acute angle
formed by the terminal side of  and
either the positive x-axis or the
negative x-axis is called the
reference angle for  .
Reference
Angle

Finding the reference angle 
1. Add / subtract multiples of 360
2 
until you obtain an angle  between
0 and 360
0 and 2 radians.
2. Determine the quadrant in which the
terminal side of the angle formed by
the angle  lies.
y
  180  
or
  
 
x
    180
or
 
  360

or
 2  
Theorem: Reference Angles
If  is an angle that lies in a quadrant and if
 is its reference angle, then
cos   cos
sin   sin 
csc   csc 
tan   tan 
cot    cot 
sec   sec 
where the + or  sign depends on the
quadrant in which  lies.
Find the exact value of each of the
following trigonometric functions using
reference angles:
16
(a) cos 570
(b) tan
3
(a) 570  360  210  
 in Quadrant III, so cos < 0
  210  180  30
3
cos 210   cos 30  
2
16
16 6 10
 2 


b
3
3
3
3
10 6 4


3
3
3
 is in Quadrant III, so tan > 0
4


 
3
3
16

3
tan
 tan 
3
3 2