Experimental Measurement of the F meson radiative decays into scalars and pseudoscalars mesons The KLOE Coll.
Download ReportTranscript Experimental Measurement of the F meson radiative decays into scalars and pseudoscalars mesons The KLOE Coll.
Experimental Measurement of the F meson radiative decays into scalars and pseudoscalars mesons The KLOE Coll. presented by Camilla Di Donato I.N.F.N. Naples International Conference on the Structure and Interactions of the Photon KLOE data collected 1999 run : 2.5 pb-1 machine and detector studies 2000 run : 25 pb-1 7.5x107 f published results 2001 run: 190 pb-1 5.7x108 f analysis in progress 2002 run: 300 pb-1 9.0x108 f analysis in progress KLOE Drift chamber: • dp/p < 0.4% • xy150 m ; z2 mm E.m. calorimeter: • E/E = 5.4% / (E(GeV)) • t = 55 ps/(E(GeV))40 ps • 98% of 4 Magnetic field: 0.52 T F radiative decays •Analysis of 2000 data: Ldt = 16 pb-1 F hg / hg F 0 0 g F h 0 g Phys. Lett. B541 (2002), 45 Phys. Lett. B537 (2002), 21 Phys. Lett. B537 (2002), 209 F radiative decays Pseudoscalar mesons (JPC= 0-+) • h (547) • h (958) (I=0) (I=0) Scalar mesons (JPC= 0++) • f0(980) • a0(980) (I=0) (I=1) fhg / fhg • The mass eigenstates h, h are related to SU(3) octet-singlet h8, h1 through the mixing angle P • Recent studies based on PT and phenomenological analyses suggested a two mixing angle scenario • In the quark flavour basis the two mixing angles are almost equal mixing is described by only one parameter (P) η cos P η sin P 1 uu dd sin P s s 2 1 uu dd cos P s s 2 fhg / fhg • P can be extracted from the ratio (Bramon et al., Eur.Phys.J.C7(1999)) : m s tg V p η Br(f ηγ) 2 R cotg P 1 Br(f ηγ) m sin2 P p η 2 3 ms ; 1.45 m • Br(fhg) can probe the gluonic content of h η X η 1 2 u u d d Yη s s Z η glue fhg / fhg • Decays with +- 3g final state: fhg ; h+-0 ; 0gg fhg ; h+-h ; hgg Br 310-3 Br 210-5 Background from f+-0 and fKLKS (with KL decaying near the IP) Analysis cut: • 1 vertex in IR with 2 tracks • 3 prompt g (E>10 MeV, |cos|<0.93) • Constrained kinematic fit • topological cuts on the energy of particles tot (hg) = 37 % tot (hg) = 23 % fhg fh´g fhg / fhg • Main background is fhg • Selection: elliptic cut in the plane of the two most energetic photons Phys. Lett. B 541 (2002), 45 Mgg (MeV) N(hg) = 120 12 N ηγ5 ε ηγevents; Br(η π π π 0N(hg) ) Br(π 0 =50210 γγ) 220 events R N ηγ ε ηγ Br( η π π η) Br(η γγ) R = Br(fhg)/Br(fhg) (4.70 0.47 0.31) 10 Fρ 3 • F =0.95 (interference with e+e-h(hg ) fhg / fhg • Using PDG value for Br(fhg): Br(fhg) = (6.100.610.43)10-5 • Pseudoscalar mixing angle: P = (41.8 1.7) (flavor) P = (-12.9 1.7) (octet-singlet) •Gluonic content of h: η X η 1 2 u u d d Yη s s Z η glue Consistency check: if Zh=0 |Yh|=cosP other constraints on Xh and Yh from: (1) hg/(0g (2) hgg/(0gg X2η Yη2 0.940.06 0.09 (2) (1) fhg / fhg Mgg (MeV) fhg7g dN/dE • Selection: Ks 0 0 Kl 0 Ks g Kl 000 data 2000 2001 2002 Eg (MeV) N(hg) = 153 12 Ks 0 0 Kl 0 Ks g Kl 000 data E++E- (MeV) E++E- (MeV) Br(fhg) = (7.05±0.50+0.53/-0.46)x10-5 f f0 980 g / a0 980 g •The scalar mesons f0 (980) a0 (980) are not easily interpreted as qq states •Jaffe(1977) suggested qqqq states •Weinstein, Isgur (1990) suggested KK molecule •Both BR and scalar mass spectra are sensitive to nature Br(ff0g) Br(fa0g) qq 5 10-5 2 10-5 qqqq 3 10-4 2 10-4 KK 10-5 10-5 Models • Predictions from Achasov-Ivanchenko, Nucl.Phys.B315(1989) ss(uu dd)/ 2 f0 model g2f0KK/(4) 2.3 (GeV2) (=g2a0KK/4) gf0 /gf0KK 0.3—0.5 Br(f00g)104 ~1 a0 model g2a0KK/(4) (GeV2) ga0h/ga0KK Br(f a0g)104 (uu dd)/ 2 ss 0.15 0.3 (=g2a0KK/4) (=2g2a0KK/4) 2 ~ 0.15 ss(uu dd)/ 2 2.3 (=g2f0KK/4) 0.91 ~2 0.5 ~ 0.2 (uu dd)/ 2 0.15 (=g2f0KK/4) 1.53 ~ 0.2 Scalar mesons (JPC= 0++) • f0(980) (I=0) • a0(980) (I=1) f000 +a0h • Studied decays (data sample: 16 pb-1 from the 2000 data,~5107f) ff0g ; f000 5 g final state Previous meas. at VEPP2M fa0g ; a0h0 hgg (39%) 5 g fa0g ; a0h0 h+-0 (23%) 2 ch. tracks +5 g first observation 5 g final states • Signal: f00g (ff0g ; f(500)g ; f00) 00 0g fh0g (f a0g ; f 00) hg • Background: e+e-0 00g fhg3g (with accidental g’s) fhg 000g (with 2g lost) cross sect.(nb) ~ 0.35 • Sample selection: – exactly 5 prompt photons – Eg > 7 MeV – |cos| < 0.93 to avoid the quadrupole region – 5Ei > 700 MeV to reject fKLKS neutrals ~ 0.1 ~ 0.5 (~17) (~14) f00g • Constrained kinematic fit to improve resolutions • Photon pairing • |Mgg - M| < 5(M) • Reject events with: |Mg - M| < 3(M) 3102 events <> = 40% Estimated backgr. (~20%) e+e-0 00g 33924 fh0g 16616 fhg 000g 15912 1+cos2 g 0 0 Fit to M spectrum radiative g f • Model : 1) ff0g dominated by kaon loop K+ f0 K- 0 0 gfKK gf0KK gf0 (Achasov-Ivanchenko, Nucl.Phys.B315(1989)) 2) f0 propagator with finite width corrections 3) (500) B-W with M=478 MeV and =324 MeV (Fermilab E791-Phys.Rev.Lett.86(2001)770) 4) point-like coupling of (500) to f (Gokalp,Yilmaz,Phys.Rev.D64(2001)) 5) + interference term parameterizations from Achasov-Gubin, (Phys.Rev.D63(2001)) • Two fits: Fit A : | (ff0g) + (f00 )|2 Fit B : | (ff0g) + (fg) + (f00 )|2 Free parameters: Mf0, g2f0KK, g2f0/g2f0KK, gfg and (gfgg)2 Fit results A B 2/ndf 109.5/33 43.2/32 Mf0 (MeV) 9624 973 1 g2f0KK/(4) 1.290.14 2.79 0.12 (GeV2) g2f0KK/g2f0 3.220.29 4.000.14 gfg — 0.060 0.008 ( contribution negligible ) Br(f00g) = (1.09 0.03 0.05) 10-4 (Fit B) (SND: (1.220.10 0.06) 10-4 ; CMD-2: (1.080.170.09) 10-4) -4 Br(ff g)= (4.47 0.21) 10 0 Large f0- destructive interference at M < 700 MeV • Estimated backgr.: (~30%) e+e-0 00g 546 f00g 15216 fhg 000g 9810 fhg ggg 52 Mh (MeV/c2) Events • Constrained kinematic fit to improve resolutions • Photon pairing: (1) 00g ; (2) h0g reject 00g events • M < 760 MeV (reject f0g events) • |Mgg - Mh| < 3(Mh) 916 events <> = 32 % Events fh0g (with hgg) • Data —MC Br(fh0g)=(8.510.510.57) 10-5 SND :(8.8 1.40.9) 10 –5 ;CMD-2: (9.0 2.41.0) 10 –5 cos fh0g +-5g (h+-0) • No background with the same final state • Backgr.: 2 Tracks + 3/4 photons (e+e-0 ; +-0) (fhg ; h+-0) 2 Tracks + 6 photons (fKSKL+-000) • 1 vertex in IR with 2 tracks • 5 prompt g (E>10 MeV, |cos|<0.93) • Constrained kinematic fit • M+-< 425 MeV (reject KS 197 events <>=19% estimated backgr. 44 events Br(fh0g)=(7.960.600.47) 10-5 Fit to Mh spectrum • Same model as for the f0 (kaon loop) • Combined fit, relative normalization fixed to Br(hgg)/Br(h+-0) • Free parameters: g2a0KK, ga0/ga0KK and Br(f00h0g) Ma0=984.8 MeV (PDG) fixed 2/ndf 27.2/25 g2a0KK/(4) (GeV2) 0.40 0.04 ga0h/ga0KK 1.35 0.09 Br(f00h0g) (0.5 0.5) 10-5 Br(fa0gh0g)= (7.4 0.7) 10-5 5g +-5g Summary of fit results • Comparison with predictions from Achasov-Ivanchenko, Nucl.Phys.B315(1989) KLOE ss(uu dd)/ 2 (uu dd)/ 2 ss f0 model g2f0KK/(4) 2.790.12 2.3 0.15 0.3 (GeV2) (=g2a0KK/4) (=g2a0KK/4) (=2g2a0KK/4) gf0 /gf0KK 0.500.01 0.3—0.5 2 0.5 Br(f00g)104 1.090.07 ~1 ~ 0.15 ~ 0.2 a0 model g2a0KK/(4) (GeV2) ga0h/ga0KK Br(f a0g)104 ss(uu dd)/ 2 0.400.04 2.3 (=g2f0KK/4) 1.350.09 0.91 0.740.07 ~2 (uu dd)/ 2 0.15 (=g2f0KK/4) 1.53 ~ 0.2 • f0 parameters are compatible with q q q q model • a0 parameters seem not compatible with q q q qmodel f f0980 g / a0980 g Phys. Lett. B 537 (2002), 21 2001+2002 data 2000 data Phys. Lett. B 536 (2002), 209 M (MeV) Mh0 (MeV) Conclusions First KLOE published papers on f radiative decays, 2000 events: • Br(fhg) = (6.100.610.43)10-5 • P = (41.8 1.7) (flavor) • • • Br(f00g) = (1.09 0.03 0.05) 10-4 Br(ff0g) = (4.47 0.21) 10-4 Br(fa0g) = (7.4 0.7) 10-5 Analysis in progress on 2001+2002 events 500pb-1: more statistic and models with more free parameters ================================================== ==== Author : KLOE Collab. (Speaker: Camilla Di Donato) Type : Experimental Measurement of the Phi meson radiative decays into scalars and pseudoscalars mesons. The Kloe experiment has measured the radiative decays of the Phi meson into pi0, eta and eta'(958); these measurements are relevant to assess the mixing in the pseudoscalar nonet as well as to evaluate the gluon content in the eta'(958). Moreover also the radiative decays into pi0 pi0 gamma and eta pi0 gamma have been measured. These decays are dominated by the final states f0(980) and a0(980). The measurement of the branching ratios and of the pi0-pi0 or eta-pi0 invariant mass spectrum helps to understand the controversial nature of the above scalar mesons. ==================================================