LRT 2004 at SNO, Sudbury 12. December 2004 Low level counting from meteorites to neutrinos: spectroscopy with multi coincidence NaI systems, Ge.
Download ReportTranscript LRT 2004 at SNO, Sudbury 12. December 2004 Low level counting from meteorites to neutrinos: spectroscopy with multi coincidence NaI systems, Ge.
LRT 2004 at SNO, Sudbury 12. December 2004 Low level counting from meteorites to neutrinos: spectroscopy with multi coincidence NaI systems, Ge detectors proportional counters and rare gas mass spectrometry Gerd Heusser Max-Planck-Institut für Kernphysik, Heidelberg, Germany ([email protected]) Outline: or the chronology of a nerd Thanks to the colleagues of the collaborations: HEIDELBERG MOSCOW, GALLEX/GNO, BOREXINO, GERDA in meteorites without shield (poor man space probe) 26Al (7.16x105 y) + 22Na 60Co only Pb shield (2.602 y) + (5.27 y) R = 75 cm Pb + Hg shield 100 Pb + Hg + veto 60Co 40 150 Jilin 4¶ meteorite 1.77 to 1a 1b Fall 1976 detector + coincidence condition half of 10”Ø x 9” total count rate [cpm] ( 100 keV) no anticoinc. with anticoinc. 537 167 6”Ø x 4” 201 67 2 fold coinc. 1a + 1b 214 22 3 fold coinc. 1a + 1b + 2 1.6 0.16 Prof. Ouyang T2¶ = 7.2 ± 1.2 My T4¶ = 0.31 ± 0.07 My n 2¶ The Low Level Laboratory of the MPI-Kernphysik (since 1968) n-induced old ships iron around detector material selection test of veto systems mBq mBq/kg sensitivity Rn removal by flushing or pumping inner shielding material plate out of 222/220Rn progenies sequentional counting E (keV) background or Cosmogenic production Background components in Ge spectrometry • external gamma radiation (2.6 MeV 208Tl, {up to 3.2 MeV 214Bi}) • radio-impurities close to crystal (primordial, anthropogenic) • Rn and its progenies • cosmic rays (neutrons, muon and activation) • neutrons from fission and ,n reactions most important: material screening U/Th chains and K dominant from Bq/kg down to Bq/kg only reliably radiopure material - Cu – but mBq/kg cosmogenics besides Si, Ge, Au, Ag, Hg, (Pb – except Pb-210) improvements in iterative steps Stimulations from: R.L.Brozinski, PNL, F.T. Avignone, USC Goulding et al., LBL Ph. Hubert, CENBG E. Fiorini and his group, INFN Milan P. Jagam, J.J. Simpson, Guelph R. M. Lindstrom, NIST 238U decay chain mass spectrometry gamma active nuclides sub chains highly volatile also from atmospheric deposition if Rn can escape, (plate out activity) otherwise Rn and Ra included 232Th decay chain gamma active nuclides mass spectrometry sub chain if Rn can escape, (plate out activity) otherwise Rn and the progenitors up to 228Th included LNGS 71Ga (e, e-)71Ge T1/2= 11.4 d Ray Davis type miniature proportional counter together with M. Hübner R. Schlotz (1980) 69Ge (T1/2 39.0 h) + + decay Ralf Lackner movable miniture X-ray generator Marcim Wójcik composition of background for Fe cathode counters in Pb/Cu shield at LNGS All GNO runs recorded during the first 50 days Fe powder screened Background rates for counters used in GNO (0.5 keV E 15 keV) : 0.45 (8 with Fe cathode and 12 with Si cathode) With pulse shape discrimination [counts/d] L-window fast K-window fast 0.040 0.025 some contamination introduced during assembly (glassblowing) 40 Bq/m3 222Rn 1.2 Bq/m3 85Kr 1 mBq/m3 39Ar 7Be +e- +e- 80 Bq/m3 222Rn 100 nBq/m3 39Ar/85Kr Commitment of Heidelberg develop methods to detect noble gas radionuclides and 226Ra (via 222Rn) at the Bq level screen relevant materials and subsystems at that level provide nitrogen for scint. purification at the req. level a concentration of Rn b proportional counting sensitivity = f(procedure blank) M. Laubenstein, Y. Zakharov W. Rau, B. Freudiger H. Simgen, Ch. Buck, G. Zuzel N2 H2O emanation 222Rn (226Ra) assay with proportional counting Ray Davis Jr. type miniture counter efficiency for internal counting ( 15 keV): 148 % background: 0.2 – 2 counts per day about 30 Bq 222Rn easily detectable (monitoring) Extract Rn from large quatities of water, nitrogen and as an emanation signal of subsystems of BOREXINO Reached sensitivities: H2O: 1 mBq Ra/m3 nitrogen: 0.5 Bq/m3 surface 0.5 Bq/m2 emanation 0.1 mBq/Rn/m3 Measuring procedure for Ar and Kr Pipes backed out and flushed with nitrogen for some days Metal-sealed valves VCR flange Pipette Sample volume: ~1 ccm gas Sample purification liquid 85Kr Mass spectrometer conc. in air, BMU Ann. Rep.02 Dewar (200 L) with liquid nitrogen bubbler G. Zuzel H. Simgen [Bq/ m3] N2 6.0 1974 2001 Nitrogen plant of BOREXINO activity in nitrogen [Bq/kg] nitrogen sample 39 RPN2 Borexino 12 41 HPN2 Borexino 12 31 Ar a) 85 Kr a) HPN2 Borexino liq.extr. Linde Worms (7.0) 0.017 0.07 SOL Mantua (7.0) 0.006 0.04 Westfalen Hörstel (6.0) 0.0006 0.06 required 0.4 0.14 air a) b) ~1.1x104 222 Rn b) 40 0.4 0.3 11.5 l 1 2 kg Carbo - Act 6 ~1.2x106 ~1x107 measured by rare-gas MS; 1 ppm Ar = 1.19 Bq/kg; 1 ppt Kr = 1.03Bq/kg measured by concentration and proportional counting Heidelberg Moscow 76Ge experiment (Klapdor-Kleingrothaus et al.) detector design in close collaboration with Canberra, Olen A. Piepke Background components from Monte Carlo simulation C. Dörr, HV Klapdor-Kleingrothaus NIM A 513 (2003) 596-621 ANG2 LNGS, no shield Heidelberg Moscow plot from O. Chkvorets + 137Cs 60Co 40K U Th 207Bi 0 plus continuous contribution of Ge intrinsic cosmogenics 60Co GeMPI Ge spectrometer of MPI at LNGS 15 l sample chamber B. Prokosch H. Neder M. Laubenstein Cosmogenic production rate in Cu (at LNGS surface) radionuclide halflife specific activity [Bq/kg] 56 Co Co 58 Co 60 Co 54 Mn 59 Fe 46 Sc 48 V 57 radionuclide cosmogenic 26 Al 7 Be 56 Co 57 Co 58 Co 60 Co 51 Cr 52 Mn 54 Mn 22 Na 46 Sc 48 V primordial 40 K 232 Th 238 U M. Laubenstein G. Heusser preliminary 77.31 d 271.83 d 70.86 d 5.27 y 312.15 d 44.5 d 83.79 y 15.97 d 230 ± 20 1800 ± 300 1600 ± 30 2100 ± 150 210 ± 20 460 ± 90 53 ± 14 11 ± 5 halflife Moravka 1 (214 g) Moravka 2 (329 g) 7.16x105 y 53.3 d 77.31 d 271.83 d 70.86 d 5.27 y 27.705 d 5.591 d 312.15 d 2.602 Y 83.79 y 15.974 d 60.4 ± 3.3 43.7 ± 7.6 6.5 ± .8 16.6 ± 2.0 11.7 ± 0.8 16.1 ± 0.9 57.7 ± 8.3 12.9 ± 1.9 120.8 ± 6.2 97.4 ± 5.1 9.0 ± 0.6 20.1 ± 1.3 54.2 ± 3.0 59,2 ± 7.9 5.5 ± 0.7 12.8 ± 1.6 8.9 ± 0.8 6.3 ± 0.4 36 ± 17 102.5 ± 5.3 85.8 ± 4.5 8.2 ± 0.7 16.1 ± 3.2 1413 ± 85 9.18 ± 0.57 8.32 ± 0.7 1395 ± 83 8.93 ± 0.69 7.68 ± 0.68 1.277x109 y 1.405x1010 y 4.468x109 y Moravka meteorite (fall: 6.5.00) H. Neder G.Heusser background (peak) count rates [c/kg y] Energy [keV] GeMPI HDM # 1-5 352 (U/Ra) 609 (U/Ra) 583 (Th) 2615 (Th) 1461 (K) 100-2730 keV 31 30 23 17 5 90 13 9760 110 - 180 96 - 140 18 - 42 11 - 22 74 - 290 12300 Contamination of Cu [Bq/kg] 226Ra (U) 228Th (Th) 40K Cryostat of ANG1 168 8 84 7 236 61 Cryostat of ANG2 91 4 10 3 78 22 Cryostat of ANG3 105 5 84 5 927 46 Cryostat of ANG4 115 3 87 4 199 4 Cryostat of ANG5 100 4 26 4 1632 49 16 12 110 measured by GeMPI* * 127 kg Monte Carlo simul. Ch. Doerr,Uni HD 2002 surface contamination naked Ge-crystals deployed in liquid nitrogen or argon (cooling medium and shield against external radiation) conventional detector crystal gladding one out of several ten reduction of contact and gladding material: about factor 7000 in mass, 200 in surface not enough space at LNGS for full shielding by liquid N2/Ar GeMPI material LN2 shielding thickness against 2.6 MeV for E-4** activity [Bq/kg] 226 Ra (U) 228 Th (Th) 40 K various intrinsic contamin. / (external) 110 98 207Bi; 180 60Co 2.7x107 210Pb 13 207Bi; 11 60Co 2.3x107 210Pb 10 60Co 221 cm / (58.7 cm) 200 1800 17000 60Co 290 cm / (66.3 cm) 1200 7100 3000 water* 1 0.04 - 0.008 2 liq. nitrogen 0.3 (222Rn) liq. argon 120 (222Rn) concrete 8x106 lead (DowRun) 29 22 440 lead (Boliden) 27 26 460 copper (Lens) 16 12 steel (foil) 600 steel (Lens) * BOREXINO 300 60 Co 12cm / (464 cm) 0.006 39Ar; 0.05 85Kr 1.1x106 1x107 215 cm / (41.0 cm) 39 Ar; 30 42Ar (637 cm) (396 cm) 9x107 ** backgroundindex at 2.039 MeV [counts/kg y keV] GERDA The GERmanium Detector Array for the search of neutrinoless double beta decay of 76Ge INFN LNGS, Assergi, Italy INR, Moscow, Russia A.Di Vacri, M. Junker, M. Laubenstein, C. Tomei, L. Pandola I. Barabanov, L. Bezrukov, A. Gangapshev, V. Gurentsov, V. Kusminov, E. Yanovich JINR Dubna, Russia S. Belogurov,V. Brudanin, V. Egorov, K. Gusev, S. Katulina, A. Klimenko, O. Kochetov, I. Nemchenok, V. Sandukovsky, A. Smolnikov, J. Yurkowski, S. Vasiliev, ITEP Physics, Moscow, Russia V.P. Bolotsky, E. Demidova, I.V. Kirpichnikov, A.A. Vasenko, V.N. Kornoukhov Kurchatov Institute, Moscow, Russia MPIK, Heidelberg, Germany C. Bauer, O. Chkvorets, W. Hampel, G. Heusser, W. Hofmann, J. Kiko, K.T. Knöpfle, P. Peiffer, S. Schönert, J. Schreiner, B. Schwingenheuer, H. Simgen, G. Zuzel A.M. Bakalyarov, S.T. Belyaev, M.V. Chirchenko, G.Y. Grigoriev, L.V. Inzhechik, V.I. Lebedev, A.V. Tikhomirov, S.V. Zhukov Univ. Köln, Germany MPI Physik, München, Germany J. Eberth, D. Weisshaar Jagiellonian University, Krakow, Poland M.Wojcik Univ. di Milano Bicocca e INFN, Milano, Italy E. Bellotti, C. Cattadori 71 physicists / 12 institutions / 4 countries I. Abt, M. Altmann, C. Bűttner. A. Caldwell, R. Kotthaus, X. Liu, H.-G. Moser, R.H. Richter Univ. di Padova e INFN, Padova, Italy A. Bettini, E. Farnea, C. Rossi Alvarez, C.A. Ur Univ. Tübingen, Germany M. Bauer, H. Clement, J. Jochum, S. Scholl, K. Rottler Spokesperson: Stefan Schönert, MPIK Heidelberg GERDA The GERmanium Detector Array for the search of neutrinoless double beta decay of 76Ge 10 cm Pb stainless steel 1.5 m radioactivity [Bq/kg] Ø 3.8 m instrumented with PMT‘s as cosmic veto h ca 5 m water shield Ge copper concrete 1x10-3 20 8x106 Ra-226 1x10-4 26 1x107 Th-228 1x10-2 88 Vespel or similar 2 x 10 cm Pb Ø 4.0 m Ø 9.4 m 9x107 K40 2.039 MeV ANG2 LNGS, no shield Heidelberg Moscow plot from O. Chkvorets also next step for screening at nBq/kg level envisioned level for Gerda exiting to see what comes up at this level Acknowledgement: MPI workshops (led by V. Mallinger, D. Doerflinger, P.Moegel) M. Wojcik E. Pernicka H. Strecker B. Freudiger A. Piepke M. Laubenstein R. Davis S. Schönert R. Lackner W. Hampel G. Zuzel M. Balata and his team W. Rau T. Kirsten Y. Zakharov my wife Lilo J. Kiko H. Simgen B. Prokosch Ch. Buck H. Neder H. V. Klapdor Kleingrothaus LRT 2004 at SNO, Sudbury 12. December 2004 Comparison of Radioassay techniques for primordial U/Th decay chains and K Ge-spectroscopy suited for emitting nuclides Rn emanation assay 226Ra, 228Th Neutron activation primordial parents Liquid scintillation counting emitting nuclides Mass spectrometry (ICP-MS; A-MS) primordial parents Graphite furnace Atom Adsorption Sp.primordial parents Roentgen Exitation Analysis Alpha spectroscopy primordial parents 210Po, emitting nuclides difficult to compare since each method has its special application Neutron activation analysis n 41K 42 K 42 12.36 h Ca, A. Piepke th 1.2 b (1.2 b) 22.3 m 27.0 d n 232Th 233Th 233 Pa 233U , 23.5 m 2.36 d n 238U 239U 239 Np 239 Pu, th 6.1 b (7.8 b) th 2.3 b (7.9 b) Sizable cross sections and long enough half lives for delayed counting NAA (TU Munich) 239Np + T1/2 = 193 ns 106 keV ‘s + conv. electron 239Pu 0.19 Bq/kg 8x10-4 Bq/kg 1x10-4 Bq/kg Results of NAA study for some materials Material 40K PPO Lot 21-634 <8.8 •10-12 (3.2±1.1) •10-12 <2.7 •10-12 Evaporated PC+PPO <73 •10-12 <1.5 •10-12 <2 •10-11 LS Sample 1 (5.3±0.7) •10-13 <15.8 •10-14 <5.1 •10-14 LS Sample 2 (3.1±0.6) •10-14 (1.8±0.6) •10-14 <1.3 •10-14 KamLAND Final LS <2.4 •10-15 < 0.6 Bq/kg <5.5 •10<-150.02 Bq/kg <8 •10<-150.1 Bq/kg [g/g] 232Th A. Piepke [g/g] 238U [g/g] For much more details on NAA look into Z.Djurcic et. al., Nucl. Instr. And Meth. A 507 (2003) 680. 1000 tons of ultra clean LS was filled into KamLAND detector over 6 month period. KamLAND was ready to take data. Gerdes, Univ. Frankfurt limits of detection 238 U 235 U 234 U 236 U 239 Pu 240 Pu 241 Pu 242 Pu 241 -14 ~ 5 x 10 -15 ~ 5 x 10 -17 ~ 10 x 10 -17 ~ 3 x 10 -17 ~ 3 x 10 g -17 ~ 3 x 10 g -17 ~ 3 x 10 g -17 ~ 3 x 10 g Am ~ 3 x 10 90 Sr 232 Th 230 Th g g g g < 1 nBq < 1 nBq ~ 20 nBq < 1 nBq < 100 nBq < 300 nBq ~ 130 µBq < 1 µBq -17 g ~ 5 µBq -15 g ~ 5 mBq ~ 1 x 10 -14 ~ 3 x 10 g ~ 1 nBq ~ 3 x 10-17 g ~ 20 nBq method Ge-spectroscopy* suited for sensitivity for U/Th emitting nuclides 10-100 Bq/kg Rn emanation assay 226Ra, 228Th 0.1-10 Bq/kg Neutron activation primordial parents 0. 01 Bq/kg Liquid scintillation counting emitting nuclides 1 mBq/kg Mass spectrometry (ICP-MS; A-MS) primordial parents 1-100 Bq/kg Graphite furnace Atom Adsorption Sp.primordial parents 1-1000 Bq/kg Roentgen Exitation Analysis primordial parents 10 mBq/kg Alpha spectroscopy 210Po, 1 mBq/kg emitting nuclides * Needs counting time of several weeks to several month Best see Borexino Collaboration, Arpesella, C. et al., Measurements of extremely low radioactivity levels in Borexino, Astrop. Phys. 18 (2002) 1-25