. . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . .. . . . . . George Gollin Department of Physics University of Illinois at Urbana-Champaign USA [email protected] . . . . ..

Download Report

Transcript . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . .. . . . . . George Gollin Department of Physics University of Illinois at Urbana-Champaign USA [email protected] . . . . ..

.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
. .
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
George Gollin
Department of Physics
University of Illinois at Urbana-Champaign
USA
[email protected]
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
1
.
. .
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
University-Based
Linear Collider Accelerator
R&D in the United States
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
.
.
.
• Physics at the International
Linear Collider,
.
. briefly
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
• The ILC accelerator
• Political matters, briefly
• Doing accelerator physics at a university
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
2
.
.
.
.
.
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
.
.
.
. .
.
..
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
The.. matters at hand
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
Physics at the International Linear
Collider, briefly
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
3
.
.
.
.
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
. .
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
• Electroweak
symmetry
breaking
is
mediated
by
.
.
.
.
.
something that almost certainly will reveal. itself in the
100 GeV to 200 GeV mass range.
.
.
.
.
.
.
.
.
.
.
• If nothing is there, the wheels come off the bus.
Everything goes crazy.
• Even if there’s a higgs, there are enormous cosmological
constant problems without something else (SUSY?)
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
4
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
We
have all . heard
this many. times:
.
. .
. .
.
.
. .
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
Physics at the ILC.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
Both
have been
.
.
necessary.
. .
.
.
.
.
The role of LEP in
refining our
understanding of the
Standard Model is an
example.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
. .
.
..
.
.
.
.
..
. .
.
.
.
. measurements
Precision
and
discovery
experiments:
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
Physics at the ILC.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
. .
.
. .
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
http://pdg.lbl.gov/2002/higgs_s055.pdf
.
.. .
.
.
.
.. .
.
..
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
. .
.
I
Physics
P
llinois
We see these plots
all the time.
6
.
.
.
.
.
.
.
Not too much of this sort of thing
today…
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
…is. mixed. Our
confidence in. our predictions
is. influenced
.
.
.
.
.
.
.
.
.
by our optimism!
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
• SU(5) and proton decay
• value of / in K  pp decay (direct CP violation)
We will need both LHC and ILC to understand the physics
of electroweak symmetry breaking
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
7
.
.
.
.
.
.
.
Our
success at.. predicting the
unknown…
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
..
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
..
.
.
.
.
.
.
.
. .
.
..
.
.
.
.
. .
.
.
.
.
8
.
.
.
In stock
and .on sale!
. .
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
I
.
We may be
closer than. we think
..
. .
.
Physics
P
llinois
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
Dark matter: 22.6%
Standard Model
Physics: 4.4%
We will need a goodly amount of data to understand things.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
9
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
. 73%
Dark energy:
.
.
.
.
.
.
. .
.
. .
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
Who are we kidding?
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
The ILC accelerator
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
10
.
.
.
.
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
. .
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
Recommendation
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
The
International
Technology
Panel’s
report
was .
.
.
.
..
. .
.
.
.
.
.
.
. recommended
.
. .
. development of .a cold
released
in September,
2004.
It
.
.
.
.
.
.
.
.
. .
. .
.
design.
(Barry Barish
chaired
the .panel.) .
.
.
.
.
.
.
.
.
.
.
.
. .
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
•…large cavity aperture and long bunch interval simplify
operations,
reduce the sensitivity to ground motion,...
•…main linac and rf systems… are of comparatively lower risk.
•…construction of the superconducting XFEL free electron laser will
provide prototypes and test many aspects of the linac.
•…industrialization of most major components… is underway.
....
. ..
. . .
. .. .
. .
. .
.
•…superconducting cavities significantly reduce power consumption.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
11
.
.
..
.
.
.
ITRP recommendation: September,
2004
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
. .
.
.
.
.
Old figure, from TESLA documents. Design is a little different now.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
12
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
The International
Linear
Collider
..
.
. .
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1.3
pulses/second
5
bunches/pulse
2820
bunches/second
14,100
peak luminosity (1033 cm-2 s-1)
34
accelerating gradient (500 GeV)
23.4 MV/m
accelerating gradient (800 GeV)
35 MV/m
.
.
.
(Table content from Tom Himel, SLAC)
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
.. .
.
.
.
RF frequency (GHz)
.
.
.
.
11.3
.. .
.
.
.
beam power (MW)
..
..
21010
.
.
.
particles/bunch
.
. .
.
.
.
500 - .1000
.
.
.
.
.
.
.
I
Physics
P
llinois
energy (GeV)
..
value
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
. .
.
.
.
parameter.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
13
.
.
.
.
.
.
.
. .
.
. .
.
..
. .
.
Linear
Collider
design,
summarized
in
2 .slides…...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
. in flux)…
ILC parameters,
briefly
(still
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
337
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
linac total length (km)
33
linac mechanical tolerances
~300 mm
damping ring circumference (km)
17
RF structure temperature (°K)
2
sx / sy at IP (nanometers)
553 / 5
.
..
.
.
.
.
.
.
.
Different RF frequencies: tighter mechanical tolerances for warm
(NLC) design than cryogenic (TESLA) design.
.
.
.. .
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
.. .
.
.
..
(Table content from Tom Himel, SLAC)
....
. ..
. . .
. .. .
. .
. .
. .
Physics
P
llinois
.
I
Different bunch spacing: warm and cold design damping rings
are very different.
14
.
.
.
.
.
.
.
.
.
.
(nsec)
..
.
.
.
.
inter-bunch
spacing
.
34
.
.
.
.
.
.
.
.
value
..
.
.
.
.
peak luminosity
(1033. cm-2 s-1)
. .
.
. .
.
.
.
. .
.
..
parameter
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
… ILC. parameters, briefly.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
. .
Cryogenic
“unit
.
.
.
.
length”
is ~2.5 km
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
TTF
.
.. .
.
.. .
.
.
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
15
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
(From TESLA TDR)
.
..
.
.
.
.
.
.
. .
.
.
..
.
. .
.
.
.
.
.
.
TESLA
main. linac
. .
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
ILC
main
linac
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.
.. .
.
.. .
.
.
..
.
(From TESLA TDR)
(From TESLA TDR)
. .
.
.
16
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
..
.
..
.
.
.
.
.
.
.
.
• Niobium, 1.3 GHz cavities
.
I
.
.
.
.
.
..
.
. .
.
requires 23.4 MV/m gradient
(theoretical
limit
is
50
MV/m)
.
.
.
.
.
. .
.
.
Physics
P
llinois
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
•
500. GeV
.
.
.
.
.
Accelerating
. .
.
. structures:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
ILC
rf
cavities
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
..
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
. .
.
(M. Liepe, http://www-conf.slac.stanford.edu/alcpg04/Plenary/Wednesday/Liepe_ColdMachine.pdf
)
.
.
.
.
.
.
.
.
..
.
.
.
.
I
Physics
P
llinois
.
17
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
..
.
.
.
.
Recent progress
is . even
better:. . 42 MV/m
now!
.
.
.
.
.
. .
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
RF. cavity gradients.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.. .
.
.
.
(click to play movie)
.
.
.
.
.
.
.
.
.
.
I
Physics
P
llinois
.
.
.
.
.
.
Long bunch spacing
(337 nanoseconds) is
necessary.
.
.
.. .
.
.
.
.
..
..
.
..
.
.
.
.
.
..
.
.
.
Bunch
length ~20. picoseconds
so
lots
of
modes
. can be excited.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
. .
.
.
.
.
.
.
.
.
.
18
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
. .
.
.
.
.
. persist.
High-Q
(superconducting)
structures:
induced
fields
..
. .
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
Wake
fields
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
. a 17 km circumference damping ring .(!!)
TESLA design called for
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
“Dogbone” shape would put most of it in the main linac tunnel but:
• access for repairs is not possible when linac is powered
• stray fields from RF system klystrons may disrupt DR beam
Why is it so long?
Because…
.
.. .
.
.. .
.
.
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
19
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
Damping
ring
designs
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
ILC
main linac
beam:. .
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
• 2820
bunches, 337 nsec. spacing
(~
300 kilometers)
.
. .
.
.
.
.
.
.
.
.
.
.
.
• Cool an .entire pulse in the damping rings
before linac injection
..
.
.
. .
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
Damping ring beam (TESLA TDR):
• 2820 bunches, ~20 nsec spacing (~ 17 kilometers)
• Eject every nth bunch into linac (adjacent bunches are undisturbed)
Kicker speed determines minimum damping ring circumference.
Large circumference is worrisome. Tricky beam dynamics?
Wigglers used to cool beam: ~400 m of them.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
20
.
.
.
.
Original design: 17 km circumference
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
If so,
a smaller damping
ring
would
be
possible.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
. .
.
.
. .
.
.
.
.
.
.
.
.
.
.
The problem with the kicker: it is hard to turn on/off quickly.
Two approaches we’re exploring:
1. brute force: hope someone invents a robust, faster HV
switch.
2. invent a new kind of kicker that is always running.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
.
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
. .
In tandem with kicker studies we’re investigating a damping ring
lattice for a 6 km ring.
21
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
What
if we
a. faster
kicker?
..
. . how to make
.figured out
.
.
.
.
.
. .
.
.
.
.
.
.
..
.
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
Kicking in new ways
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
. .
.
. pulses traveling
.
.
A bunch “collides”
with
electromagnetic
in
the
.
.
.
.
.
. .
.
.
.
.
.
.
.
. to
.
opposite
direction
inside a. series
of. traveling
wave
structures.
Hard
. .
.
.
.
.
.
.
.
.
.
.
turn on/off fast
enough.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
.. .
.
.
.
.
.
.
.. .
.
.
.
.
I
....
. ..
. . .
. .. .
. .
. .
..
.
.
.
.
.
. .
..
.
.
Fast kicker specs (à la TESLA TDR):
•  B dl = 100 Gauss-meter = 3 MeV/c (= 30 MeV/m  10 cm)
• stability/ripple/precision ~.07 Gauss-meter = 0.07%
Physics
P
llinois
.
.
.
.
.
.
22
.
.
.
. .
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
Brute force:
stripline
kicker
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
1. N
  cos  k0t  
2 k 1

1 
sin  N   0t 
2 
1

2
sin 0t 2 
.
.
.
.
.
.
.
.
.
.
.
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
.. .
.
.
..
llinois
.
I
....
. ..
. . .
. .. .
. .
. .
.. .
.
..
Note the presence of evenly-spaced “features” (zeroes or spikes).
Physics
P More on this later.
. .
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
23
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
unkicked bunches traverse kicker
during zeroes in the field integral
.
.
N=16
.
.
.
.
.
. .
.
.
..
.
.
.
..
.
. .
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
More clever (too clever?):. Fourier
.
..
.
. .
.
representation
of a periodic d function
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
ILC . main linac .beam:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
• 2820 bunches, 337 nsec
spacing (~ 300
kilometers)
.
.
.
.
.
.
• Cool an entire pulse
in the damping rings before . linac
injection
.
.
.
.
.
.
.
.
..
.
.
.
Damping ring beam (FNAL/ANL/UIUC):
• 2820 bunches, ~6 nsec spacing (~ 6 kilometers)
• Eject every nth bunch into linac (adjacent bunches are undisturbed)
Similar damping time, but higher current.
Initial studies indicate that various instability issues are tractable.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
24
.
. .
.
.
.
. .
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Fermilab/ANL/UIUC
6
km
ring
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
Comparison
of small
ring and. dogbone
designs
..
.
. .
.
.
.
.
.
. .
.
..
.
.
.
.
.
.
.
.
..
.
6.12 km
8 mm·mr
0.02 mm·mr
.
.
.
.
.
.
.
.
.
.
. +/e.-) .
+/e. -)
Small
ring
(e
Dogbone
(e
.
.
.
.
.
.
.
.
.
.
5 GeV
5 GeV
.
.
.
.
17
. km
8 mm·mr
0.02 mm·mr
..
.
.
.
.
.
.
Transverse damping time td 28 ms / 44 ms
28 ms / 50 ms
Current
Energy loss/turn
Radiated power
Tunes Qx, Qy
160 mA
21 MeV / 12 MeV
3.2 MW / 1.8 MW
72.28, 44.18
-125, -68
.
.. .
.
.. .
.
.
.
..
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
. .
I
Physics
P
llinois
.
Chromaticities x, y
443 mA
7.3 MeV / 4.7 MeV
3.25 MW / 2.1 MW
62.95, 24.52
-112, -64
25
.
.
.
.
.
.
.
.
Horizontal emittance gex
Vertical emittance gey
.
.
.
.
Circumference
.
..
.
.
.
.
.
.
.
.
.
Energy
. .
.
.
. .
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
Parameter
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
. .
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
The. present lattice
design of the small
damping
ring uses
.
. 25
.
.
.
.
.
.
.
wigglers, so
the beam dynamics issues associated with
wigglers
will
.
.
.
be less complex.
.
.
.
.
.
.
.
.
.
.
Preliminary studies (results in the tables a few slides back) indicate
that the small ring is stable.
The present lattice has six straight sections. This will allow inclusion
of distributed correction schemes which address dispersion,
coupling, higher order multipole corrections, and so forth.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
.
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
. .
It will take a sustained, continuing effort to make steady progress.
26
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Comments about
a small
damping
ring
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
..
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
I
Physics
P
llinois
.
..
.
.
.
.
.
.
.
.
.
..
27
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
..
.
.
.
.
. .
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
Much
more detail
about kickers later
in this
talk…
.
.
.
.
.
.
.
More information
in
a
short
while
..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
Political matters, briefly
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
28
.
.
.
.
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
. .
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Antonio Gramsci
1891 – 1937
Prison Notebooks
(“Hegemony”)
.
.
.
.
Williams, 1992: 27 in http://www.theory.org.uk/ctr-gram.htm)
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
29
.
.
.
.
.
.
.
.
.
.
2. “The key to 'revolutionary' social change in
modern societies does not therefore depend, as
Marx had predicted, on the spontaneous
awakening of critical class consciousness but
upon the prior formation of a new alliance of
interests, an alternative hegemony or 'historical
bloc', which has already developed a cohesive
world view of its own.” (quoted by M. Stillo from
.
.
.
. .
.
..
. .
.
.
.
.
1. The evolution
of
events
is
chaotic,
not
smooth.
.
.
.
.
.
.
. .
.
. take
We
to
. quickly
. . must be ready to act
.
.
.
.
.
.
.
.
advantage
of opportunities that may arise.
..
.
.
.
. .
.
.
.
.
.
.
..
.
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
Will it ever get built?.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
1. . “RIA for. .Illinois”. task force run
the Illinois Department
for
.
.
..
.
.
.
.
.
.
.
.
.
.
Economic
Opportunity
(DCEO).
Argonne,
. Commerce and
.
.
.
.
.
.
.
. .
. .
.
.
.
Fermilab,
and. Illinois Universities
are major
. participants.
.
.
.
.
2. Considerable strengthening of the Fermilab – Argonne
alliance
has taken place in recent months.
3. RIA, ILC, proton driver, and APS direct injector linac are all
superconducting machines that could be built in Illinois. DCEO
appears to understand that a wider scope for its RIA advocacy is
appropriate now. This is still evolving.
4. Continuing discussions with DCEO are important and are
occupying some of us.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
30
.
.
. .
.
. .
.
.
.
.
..
..
by.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
State of Illinois efforts.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
. has now stated. that. the U.S. proposal
. to become
Office
of Science
.
. .
. .
.
.
.
.
. forth Fermilab
the ILC
host country
will. put
as .the host laboratory.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
Apparently OS would like to see a significant reduction in total
project cost relative to what we presently expect ILC to cost.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
31
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
. .
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
The federal scene
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
Doing accelerator physics at a
university
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
32
.
.
.
.
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
. .
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
Many university HEP
groups have concentrated
on detector
.
.
projects, perhaps because they believe these are:
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
Accelerators
are
BIG, EXPENSIVE
devices.
. .
. .
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
. .
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
• more suitable in scale for a university group
• more practical, given their prior experience in detector
development.
Is this really true? Should university groups stay away from
accelerator physics projects?
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
33
.
.
.
Can. university groups
do accelerator
physics?
..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
There
are interesting,
important
projects
. whose .scope is
.
.
.
.
.
.
ideal for .a university
group.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
The (inter)national labs welcome our participation and will
help us get started, as well as loaning us instrumentation.
Many projects involve applications of classical mechanics
and classical electrodynamics. These are perfect for bright,
but inexperienced undergraduate students.
The projects are REALLY INTERESTING. (Also, it’s fun
to learn something new.)
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
34
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. can do
Of course university groups
..
.
. .
.physics!
accelerator
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
January,
2002:
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
• FNAL was focused
on Run II problems. . LC
wasn’t on
.
.
the lab directorate’s radar.
.
.
.
.
..
.
• most university LC groups were already affiliated with
SLAC; most were doing detector simulations.
• there was little planning underway to attract new groups
(for example, with Fermilab orientations).
That’s not good!
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
35
.
.
.
.
.
.
.
Engaging
the ..university HEP
community
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Fixing
we’re
not
lab
employees,
we
. .
. . this: we’re professors,
.
.
.
.
.
.
.
.
.
.
can do things
without
asking
permission,
they
can’t
fire
us. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
April - May, 2002 workshops at FNAL, Cornell and SLAC:
• meetings focused largely on concrete R&D topics
• Purpose: introduce university physicists to R&D issues
suitable for university groups. (We really like doing lab
work!)
• almost no Higgs sensitivity vs. stuff talks (at least not at
FNAL).
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
36
.
.
.
.
.
.
.
Engaging
the ..university HEP
community
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Tom. Himel (SLAC)
was the hero
of. the .workshops:
he
.
.
.
.
.
.
.
.
.
assembled
a list of
accelerator
projects
for
us
to
consider.
.
.
.
“The List” included NLC and TESLA projects.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
These workshops ultimately led to a 50% increase in
university participation in LC R&D.
About half of the new participants took on accelerator
projects!
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
37
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
Fermilab, Cornell,
SLAC
workshops
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
. physicist
.
skill_type
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
Acoustic
. . sensors for structure.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
Detailed project description understand the acoustic
emissions from breakdowns and how the sounds propogate so
that the use of acoustic sensors can improved in
diagnosing breakdowns.
Needed by whom NLC and TESLA
present status In progress, help needed
Needed by date 6/1/2003
.. .
.
.. .
.
.
.
..
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
.
www-conf.slac.stanford.edu/lcprojectlist/asp/projectlistbyanything.asp
.
I
Physics
P
llinois
(650)926-3526, [email protected]
. .
Contact Person Marc Ross,
38
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
short project
.
and DLDS breakdown.
.
.
description
.
.
.
.
.
. .
.
.
.
project_size
. . Medium .
.
. .
.
..
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
ID 61
. .
An example from Himel’s. list…
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.
.
.
.. .
.
.. .
.
.
.
..
.
..
.
.
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
.
.
. .
.
.
.
.
more on this later…
39
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
..
.
. .
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
I
.
.
Physics
P
llinois
.
.
.
.
.
.
.
.
.
.
.
…and what
we’re. doing
with. it.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. .
.
.
..
.
.
. .
.
..
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.. .
.
.
.
.
.
. .
.
.
.
.
..
.
.
•low
level RF Digital Feedback
Hardware .
.
.
. .
.
.
.
. . for RF System
.
•Exception Handling
.
.
.
.
.
.
. Guide Tuner Control
.
•TESLA
Wave
.
.
.
.
.
.
•Structure Breakdown
diagnostics
•active vibration stabilization of Final Doublet
•Linac accelerator structure cooling without vibration
•Acoustic sensors for structure and DLDS breakdown
•beam profile monitor via Optical Transition Radiation
•Very fast injection/extraction kickers for TESLA damping ring
•RF BPM electronics, including tilt
•5-10 kW magnet power supply
•flow switch replacement
•robot to replace electronic modules in tunnel
•Programmable Delay Unit
•linac movers: 50 nm step, rad hard
•Low Level RF 500 MHz digitizer
.
.
40
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
Physics
P
llinois
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
..
.
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
I
.
.
.
.
.
.
.
.
.
.
.
.
Sample accelerator projects
.
.
. .
.
Here. are some of the ~110
items
from
Tom’s
list:
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
Desired outcome:
• broad range of projects without duplication of work.
• collaboration among university groups would be possible,
even when one is DOE funded, one NSF funded.
• mechanism for informal oversight of progress (what’s
working, what’s not?)
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
41
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
How to organize
something like this?
..
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
. .
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
“Jump-starting” a university-based
..
.
. .
.
R&D program
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8/02
.
.
.
.
.
..
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
UCLC proponents write
“project descriptions”
9/02
9/02
10/02
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
.. .
.
.
.
.
.
proposal coordinators create new document combining revised
LCRD and UCLC projects, then transmit to DOE and NSF.
10/02
.. .
UCLC proponents revise
project descriptions
..
.
.
.
separate accelerator and detector committees
review proposed work for both agencies
.
.
.
9/02
. .
.
..
proposal coordinators create one unified document
combining LCRD and UCLC projects
LCRD proponents revise
subproposals
Physics
P
llinois
.
.
42
.
.
.
.
.
. .
.
.
LCRD proponents write
“subproposals”
.
..
.
.
.
.
.
.
.
.
. . write . .
proponents
7/02
.
.
. descriptions .
short
project
.
.
.
.
.
.UCLC (NSF)
.
ALCPG working .group
leaders
offer. suggestions
.
.
.
.
.
for revision, collaboration with other
. . groups, etc.
.
.
I
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
We organized ourselves
.
.
.
..
..
LCRD (DOE)
proponents
write
.
.
. .
.
short project. descriptions
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
71. new projects
.
.
.
.
47
. U.S. universities
.
.
6 labs .
.
22 states
11 foreign institutions
297 authors
2 funding agencies
two review panels
two drafts
546 pages
8 months from t0
.
.
.
.
.
.
.
.
. .
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.. .
.
.. .
.
.
..
.
.
..
.
*planning grant only
. .
.
.
Funded by NSF* and DOE
43
.
.
.
.
.
.
•
•
•
•
•
•
•
•
•
•
•
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
Physics
P
llinois
.
.
.
I
…renewal submitted November, 2003
…third year submitted February, 2005
.
.
.
.
..
.
.
.
. .
.
.
The result:
.
.
.
.
. .
.
..
.
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
The result, first year.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.
.
.
.
.
.. .
.
.. .
.
.
..
.
.
background image: Big Doc author list
. .
.
.
.
.
.
44
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
. .
.
.
(University
of
. Michigan)
. .
.
.
.
.
(Northern
Illinois University)
..
(Wayne State University)
(Cornell University)
(Fermilab)
(University of Illinois)
(SLAC)
(SLAC)
(University of Iowa)
(Fermilab)
(Cornell University)
(Cornell University)
(Fermilab)
.
.
.
.
..
.
.
.
.
..
.
. .
.
I
Physics
P
llinois
.
.
Dan
. .Amidei
.
.
Dhiman
Chakraborty
.
Dave Cinabro
Gerry Dugan
Dave Finley
George Gollin
Tom Himel
John Jaros
Usha Mallik
Shekhar Mishra
Ritchie Patterson
Joe Rogers
Slawek Tkaczyk
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
. .
.
“Proposal
. coordinators”:
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
Who
the “we”
is .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
$1,151. k
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
$171 k
9
$238 k
Vertex Detector
3
$119 k
3
$173 k
Tracking
11
$396 k
11
$597 k
Calorimetry
12
$515 k
13
$855 k
Muon System and Particle ID
3
$149 k
3
$194 k
Total
71
$2,354 k
68
$3,208 k
Funding received from DOE
~$900 k
~$1,200 k
Funding received from NSF
$150 k
it’s complicated
.
.
.
.
.
.
Physics
P
llinois
FY05 funds being worked out now.
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
.. .
.
..
.
.
9
..
.
.
.. .
.
.
29
.
$(04)
.
.
.
. .
.
.
.
.
.
.
.
# (04)
.
.
.
$1,003
k
..
.
.
.
$ (03)
.
..
.
.
.
.
.
.
I
. .
.
Luminosity, Energy, Polarization
33
.
..
.
.
. .
.
.
Accelerator. Physics
.
.
.
.
.
.
.
.
.
.
# (03).
.
.
.
.proposals to DOE + NSF.
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
45
.
.
.
.
.
.
.
.
.
.
Scope
of
U.S.
university
work
in
this
initiative
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
•Ground Motion: 1
•Control Systems: 1
•RF Technology: 5
.
.
.
.
..
.
.
.
.
.
.
.
.
..
. and
.
•Beam
simulations
other calculations:
6
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
. .
. .
•Kickers,
magnet technologies,
mechanical
support systems:
4
.
.
.
.
.
.
.
.
.
.
.
.
•Instrumentation
and
electronics:
9
.
.
.
. .
.
.
.
.
.
.
.
.
.
•Non-e+e- collisions: 1
•Electron and positron source technology: 2
Let’s look in more detail at two of mine.
.
.
.
.
.. .
.
.. .
background image: acoustic wave in copper simulation
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
46
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
University. accelerator R&D. topics
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
. .
.
. .
.
.
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Can. .we learn more
about . NLC
rf cavity
breakdown
through
acoustic
.
.
.
.
.
.
.
.
.
. events?
.
signatures of breakdown
.
..
.
.
.
.
.
.
.
.
.
.
.
.
At UIUC:
.
.
.
.
.
George Gollin (professor, physics)
Mike Haney (engineer, runs HEP electronics group)
Bill O’Brien (professor, EE)
Jeremy Williams (postdoc)
Erik Wright (graduate student)
Joe Calvey (UIUC undergraduate physics major)
Michael Davidsaver (UIUC undergraduate physics major)
Justin Phillips (UIUC undergraduate physics major)
.
.. .
.
.. .
.
.
.
..
.
.
. .
.
I
Physics
PMarc Ross is our contact person at SLAC.
llinois
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
47
.
.
In
of. acoustic
of rf
.
. localization
. more detail: “Investigation
.
.
.
.
.
.
.
. .
.
.. breakdown”
.
. .
cavity
(Illinois)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
..
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
..
. design .for
. complicated:
.
.
. RF couplers
The
TESLA
is
RF
flows
in
one
.
.
.
.
.
. .
.
.
.
.
.
.the other
.
.
.
end. (at
room
temperature),
out
end
(at
2K).
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
Breakdown. in the couplers may prove to be an issue.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
What we have learned in studies of NLC structures should map into
investigations of TESLA coupler breakdown.
.
.. .
.
.. .
.
.
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
48
.
.
.
..
.
.
.
A note concerning. the warm/cold
.
.
.recommendation
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
.
.
We need to understand its
acoustic properties.
Start by pinging copper
dowels with ultrasound
transducers in order to learn
the basics.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
49
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
Harry. Carter sent. us a five.
cell structure. from Fermilab’s
.
NLC structure factory.
.
.
. .
.
. .
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
This is what
we were studying
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Copper
dowels from Fermilab NLC Structure
Factory
.
.
.
.
.
.
.
#2. is heat-treated…
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
…#1 is not.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
..
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
I
Physics
P
llinois
.
. .
.
NLC structures are heatbrazed together; heating
creates crystal grains
(domains) which modify the
acoustic properties of copper.
.
. .
.
.
.
Harry
Carter sent
a pair of
.
.
. us
. .
. .
copper
dowels
from
their
.
.
.
.
.
structure manufacturing
stock:
.
one was heat-treated, one is
untreated.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
.
.
.
.
..
.
50
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
transducer
signal
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
Tektronix +WaveStar, also
NI PCI-5112 + LabVIEW
.
....
. ..
. . .
. .. .
. .
. .
.
.. .
.
.
.
.. .
.
..
.
.
. .
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
We can listen for echoes returning to the transducer
which fires pings into the copper, or listen to the
signal received by a second transducer.
.
.
.
.
.
.
.
trigger
scope
.
.
.
.
.
.
.
.
.
.
I
#2
.
.
copper dowel
. .
.
+
.
..
.
.
.
.
.
Physics
P
llinois
.
. .
.
.
..
.
.
.
. .
.
.
.
.
.
.
..
.
.
.
.
..
.
.
#1
.
HV . .
pulser .
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
Transducer setup
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.. .
.
.
.
.. .
.
..
.
.
. .
.
.
.
.
.
.
.
.
.
.
#2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
.
.
I
.
.
..
.
Physics
P
llinois
.
.
.
#1
.
. .
.
.
.
. .
.
.
.
. .
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Transducer setup, on the bench
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
. .
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
Piezoelectric
behaves
MHz oscillator.
. . like .a damped 1.8
. .
. transducer
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
A “ping” launched
a
copper
dowel
will
bounce
back
and
forth,
.
.
.
.
.
.
losing energy through
.
.
.
.
.
.
.
into.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
• absorption in the transducer
• scattering of acoustic energy out of the ping
• absorption of acoustic energy by the copper.
.
.. .
.
.. .
.
.
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
53
.
.
.
Scattering/attenuation at 1.8 MHz
in copper
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
. .
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
..
.
.
.
..
. .
.
. baseline “noise”
.
.
Single
transducer:
ping,
then
listen
to
as
pulse
.
.
.
.
.
.
.
.
.
.
.
.
.
travels
in copper, pumping
. . energy .into acoustic baseline “glow.”
. .
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
At ~5 mm per msec,. full scale corresponds to 12 m. acoustic
path
.
inside the heat-treated (grainy) dowel. The “glow” lasts a long time.
.
.
.
5 mV
100 msec
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
Full scale ~2.4 milliseconds. Lots of round-trips!
.
I
Physics
P
llinois
.
..
54
.
.
.
.
.
.
.
.
.
Scattering
is much. more important than attenuation
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Speeds of propagation for pressure
and shear waves are determined by
k1, k2, and k1/k2. We use k2 = k1/2.
.
.
.
.
.
Our
model: regular
points
.
.
. . (rectangular,. 2D,. 3D) grids. of mass
.
. .
. .
.
.
.
.
.
connected
by
springs.
Transducer
is
an
array
of
points
driven
in.
.
.
.
.
..
. damping.
unison, with
k1
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
. .
.
.
.
.
.
..
.
.
.
k1
k2
k2
We can vary spring constants
arbitrarily in order to introduce
dislocations and grains: our grain
boundaries have smaller spring
constants.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
55
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Condensed
matter,
as done by
folks in
HEP
.
..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
. .
.
.
.
.
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Note the different
propagation speeds.
.
.. .
.
.
.
.. .
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
.
.
Propagation
of a 50% shear, 50% compression
wave,
.
.
.
..
.
. .
.
copper
without
grains
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
. .
.
.
.
.
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Note the different
propagation speeds.
.
.. .
.
.
.
.. .
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
.
.
Propagation
of a 50% shear, 50% compression
wave,
.
.
.
..
.
. .
.
copper
without
grains
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
. .
.
.
.
.
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Note the disruption
of the wave fronts
due to scattering!
.
.. .
.
.
.
.. .
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
.
.
Propagation
of a 50% shear, 50% compression
wave,
.
.
.
..
.
. .
.
copper
with. grains
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
. .
.
.
.
.
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Note the disruption
of the wave fronts
due to scattering!
.
.. .
.
.
.
.. .
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
.
.
Propagation
of a 50% shear, 50% compression
wave,
.
.
.
..
.
. .
.
copper
with. grains
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
.
.
.
(We are presently refining our transducer modeling…)
.
.. .
.
.
.
.. .
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
. .
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Simulated transducer response,. last year
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
movie
plane
excitation
transducer
.
.
.
.
.. .
.
.. .
.
.
A flaw: transducers are TOO good.
..
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
. .
transducer
61
.
.
.
.
. .
.
. .
.
.
4 “perfect”
transducers,
one
.
.
.
.
.
.
.
.
. acoustic excitation spot.
.
.
.
.
.
.
. .
.
.
.
transducer.. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
transducer
.
.
.
..
3-D model we’ve been working
with
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
. .
.
.
..
.
.
.
.
.
.
.
knows
.
.
.
.
.
• transducer
about
individual
motions
of
each
of
the
.
.
.
.
.
.
individual mass
points it touches (a real transducer
returns a
signal based on the average of all points)
.
.
.
.
.
• transducer returns velocity vector of surface points (ours
don’t [though this kind exists]: we only measure the
component normal to the transducer face
Discarding information degrades our naïve reconstruction
algorithm’s performance considerably. (This is what we’re
working on now.)
....
. ..
. . .
. .. .
. .
. .
But here’s a look at our naïve approach anyway: it gives an idea of
Physics
Phow surprisingly well things work with very limited information.
.
.. .
.
.. .
.
.
.
..
. .
llinois
.
I
.
.
62
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
Our
general
approach
has
been
to
assume
“perfect
knowledge”
of
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
. of the copper at the
the
behavior
transducers:
.
.
.
.
. .
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
The main difficulty….
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
..
.
.
.
.
..
.
.
.
transducers “hear”
. .
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
We’ll
record
simulated. .
it.
.
. then try playing
.
. .
. what the
.
.
.
.
.
.
.
. .
.
back
into the. copper
to
see
if
we
generate
a
peak
in
the
intensity
.
.
.
.
.
.
.
.
. .
. .
.
.
.
somewhere
which
corresponds
to
the
original
excitation.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.. .
.
.
.
.
.
.
.. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
.
.
.
. .
.
.
.
.
.
(grain-free “Cu”)
.
.
. .
.
.
.
.
I
.
..
.
Physics
P
llinois
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
Acoustic
excitation, viewed in one horizontal
slice
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
..
.
.
.
.
..
.
.
.
transducers “hear”
. .
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
We’ll
record
simulated. .
it.
.
. then try playing
.
. .
. what the
.
.
.
.
.
.
.
. .
.
back
into the. copper
to
see
if
we
generate
a
peak
in
the
intensity
.
.
.
.
.
.
.
.
. .
. .
.
.
.
somewhere
which
corresponds
to
the
original
excitation.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.. .
.
.
.
.
.
.
.. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
.
.
.
. .
.
.
.
.
.
(grain-free “Cu”)
.
.
. .
.
.
.
.
I
.
..
.
Physics
P
llinois
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
Acoustic
excitation, viewed in one horizontal
slice
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
(grain-free “Cu”)
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Physics
P
llinois
.
.
I
.
.
. .
.
.
.
.
. .
.
.. .
.
.
.
.
.
.
..
.
.
..
.
.
.
.
..
.
Now
use measurements
from perfect
to.. drive acoustic
.
.
..
. .
.
.
.
.
.
.
.
.
signals
back .into
for
an
intensity
peak:
.
.
. .the copper… look
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
.transducers
.
.
.
.
.
.
..
.
.
.. .
.
.
.
.
. .
.
.
.
.
.
.
.
Drive transducer signals back into
copper
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
I
.
.
(grain-free “Cu”)
Physics
P
llinois
.
.
.
.
.
.
.
.
. .
.
.
.
.
. .
.
.. .
.
.
.
.
.
.
..
.
.
..
.
.
.
.
..
.
Now
use measurements
from perfect
to.. drive acoustic
.
.
..
. .
.
.
.
.
.
.
.
.
signals
back .into
for
an
intensity
peak:
.
.
. .the copper… look
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
.transducers
.
.
.
.
.
.
..
.
.
.. .
.
.
.
.
. .
.
.
.
.
.
.
.
Drive transducer signals back into
copper
.
.
..
.
.
.
.
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
.
.
.
.
.
. .
.
..
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.. .
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
I
Physics
P
llinois
.
.
.
.
..
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. .
.
.
.
.
. one wavelength
.
..
650
grains. total;
grain
. .size is random,
.
.but typically
.
..
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
Acoustic excitation, copper with
grains
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
.
.
.
.
.
. .
.
..
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.. .
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
I
Physics
P
llinois
.
.
.
.
..
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. .
.
.
.
.
. one wavelength
.
..
650
grains. total;
grain
. .size is random,
.
.but typically
.
..
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
Acoustic excitation, copper with
grains
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
.
.
.
.
.
. .
.
..
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
It. still works.
transducers
have
unrealistic
properties:
model
..
. .
. BUT these
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
assumes
perfect. knowledge
of movement
of surface everywhere
at
.
.
. .
. .
.
.
.
.
.
.
transducer
face. .Real transducers
don’t
work
this
well. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. .
.
.
..
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.. .
.
.
.
.
.
.
. .
..
.
.
.
.
.
.
I
.
.
.
Physics
P
llinois
.
..
.
.
.
..
.
.
.
.
Drive transducer signals back into .grainy copper
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
.
.
.
.
.
. .
.
..
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
It. still works.
transducers
have
unrealistic
properties:
model
..
. .
. BUT these
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
assumes
perfect. knowledge
of movement
of surface everywhere
at
.
.
. .
. .
.
.
.
.
.
.
transducer
face. .Real transducers
don’t
work
this
well. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. .
.
.
..
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.. .
.
.
.
.
.
.
. .
..
.
.
.
.
.
.
I
.
.
.
Physics
P
llinois
.
..
.
.
.
..
.
.
.
.
Drive transducer signals back into .grainy copper
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
. . insensitive
real transducers are
to
shear
waves,
and
only
.
.
.
.
.
.
.
.
.
provide
sums
of
amplitudes
over
entire
transducer
surface.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
• Refinement of reconstruction algorithm. So far we find t0 and
initial position using something like an autofocus algorithm:
use receiver transducers to “drive” signals backwards in
time into copper; find time of maximum rms deviation from
constant amplitude.
a real transducer only reports average amplitude over sensor
face: it doesn’t project sound backwards in a realistic
manner (it produces a narrow beam)
..
.. .
.
.. .
.
.
.
.
.
.
. .
.
I
• Measurements of real NLC structure properties and transition
Physics
P
to RF coupler geometry
llinois
....
. ..
. . .
. .. .
. .
. .
71
.
.
.
.
.
.
.
. .
.
• More. realistic
modeling
of .transducer
performance
. .
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
What we . have been working
on
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
•$35k FY05
•$35k FY06
•Support goes for a mix of instrumentation (more
electronics, transducers,…) and student salaries
.
.. .
.
.. .
.
.
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
72
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
..
.
•$25k FY04
.
.
.
.
.
.
.
. .
.
.
.
.
..
.
DOE
is funding
LCRD 2.15!
.
.
.
.
.
.
..
.
.
.
. .
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
DOE
support
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
This
particular project
is
well
suited
for
undergraduate
participation.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
The students are very good! All three undergraduate students will
continue working after the summer ends.
We are finding it very natural to work in an area that is new to all of
us.
Summer is our most productive time.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
73
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
We are having a lot of. fun
..
.
.
.
(and you can too!) .
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
our other project…
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Here’s
.
.
. .
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
Linac beam: 2820 bunches, 337 nsec spacing (~ 300 kilometers)
Damping ring beam: ~20 nsec spacing  ~ 17 kilometers
Kicker speed determines minimum damping ring circumference.
We’re aiming for 6 km circumference.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
74
.
.
.
.
.
.
.
.
.
Fourier
engineering:
progress on .alternative
TESLA
.
..
.
.
.
.
.
kickers
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.. .
.
.
..
.
.
.
.
.
.
.
..
..
.
.
.
.
.
.
.
.
.
Joe Calvey
Michael Davidsaver
Justin Phillips
George Gollin
Mike Haney
Jeremy Williams
.
.
.
Univ. Illinois
.. .
.
.
.
.
. .
. .
.
.
.
Shekhar Mishra
François Ostiguy
Ralph Pasquinelli
Phillipe Piot
John Reid
Vladimir Shiltsev
Nikolay Solyak
Ding Sun
.
.
.
.
..
.
Tug Arkan
Euvgene Borissov
Harry Carter
Brian Chase
David Finley
Chris Jensen
Timergali Khabiboulline
George Krafczyk
.
.
.
.
Fermilab
.
.
.
.
.
.
Physics
P
llinois
.
.
.
.
.
.
Gerry Dugan
Joe Rogers
.
.
.
.
..
.
Cornell
.
.
.
.
.
75
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
This
Linear.
. . US university-based
. project. is. part of the
.
.
.
.
.
.
.
.
.
. .Collider R&D. effort
.
(LCRD/UCLC)
.
. .
.
I
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Participants
.
..
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. .
.
.
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
..
.
.
.
.
.
.
I
.
.
..
.
.
Fast kicker specs (à la TDR):
•  B dl = 100 Gauss-meter = 3 MeV/c (= 30 MeV/m  10 cm)
• stability/ripple/precision ~.07 Gauss-meter = 0.07%
Physics
P
llinois
.
.
.
.
.
.
.. .
.
.
.
. .
..
.
.
.
..
. .
. bunch “collides”
.
. pulses traveling
.
TDR design:
with
electromagnetic
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
in the
a series
of .traveling wave structures.
. .
. . opposite direction inside
.
.
.
.
.
.
.
.
Hard. to turn. on/off
fast enough.
..
76
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. à la TDR
TESLA damping
ring
kicker
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
.
.
damping ring beam
.
.
.
Fourier kicker
damping ring beam
..
.
.
.
.
.
.
.
.
.
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
.
.
I
kicker field vs. time
.. .
.
.
.
.
.
.
kicker field vs. time
..
.
.
.
..
Kicker is always on.
Physics
P
llinois
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
..
.
.
..
kicker .
Fields when kicker is
empty of beam are
irrelevant.
Synthesize kicker impulse
from Fourier components
of something with good
peaks and periodic zeroes.
.
.
.
. .
conventional
.
.
.
.
.
.. .
.
.
.
.
Kicker
. . field needs to be
.
zero. when unkicked
.
.
bunches pass through..
.
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
77
.
.
.
.
.
.
.
Since it’s hard to turn on/off, why
not leave
.
..
.
. .
.
.
it ON all the time?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Three. functions with
good peaks
and . zeroes:
#1
..
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
1.. part of the .series
.
. . for a periodic
. d function (. is linac
. frequency):
.
.
.
.
.
.
.
.
.
.
.
.
.
Fourier amplitudes
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
a. k
k=N
k
N=16
A problem: field has non-zero
time derivative at the zeroes.
Bunch head and tail experience
different (non-zero) fields.
.
.
.. .
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
.. .
.
.
..
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
. .
“Features” (peaks and zeroes)
are evenly spaced.
78
.
.
.
.
.
.
..
.
.
.
.
.
. .
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Three. functions with
good peaks
and . zeroes:
#2
..
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
ak
.
.
.
.
.
.
.
.
.
.
Fourier amplitudes
..
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
2.. “square” of. last
zero
slope…
.
. . page: this way
. zeroes also have
.
.
.
k=N
k
Better… but frequencies
range from 3 MHz to 180
MHz.
kicker
fields
1
kicker fields
0.04
0.8
0.03
A 3 MHz RF device is very
different from a 180 MHz
device.
0.6
0.02
0.4
0.01
40
0.2
80
100
120
140
160
....
. ..
. . .
. .. .
. .
. .
.
100
150
George Gollin, University Based Linear Collider R&D, March, 2005
.
.
.
50
.. .
.
.
.
-50
.. .
-100
..
-150
. .
.
I
Physics
P
llinois
60
79
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Three. functions with
good peaks
and . zeroes:
#3
..
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
. .
. bandwidth is reduced.
3.. high-frequency
modulate:
this
way
fractional
.
.
.
.
.
.
.
.
.
.
.
bb bbbbbbbbbbbb
.
..
.
Fourier amplitudes
.
.
.
.
.
k=N
k
.
2N
kicker
This is what we’re actually
studying now, but with
N = 60 and  = 10:
~1.8 GHz ± 10% bandwidth
-50
50
100
150
....
. ..
. . .
. .. .
. .
. .
.
.
.
.. .
.
-0.5
.
.
-100
.. .
-150
.
I
Physics
P
llinois
0.5
.
(Graph uses N = 16,  = 4.)
fields
1
..
.
ak
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
80
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
injection/extraction
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
damping
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
. .
.
..
.
.
. .
.
.
..
.
.
.
.
. the
We. don’t want
.
.
.
. .
beam
to
go
through
. .
.
.
the kicker
until we’re
.
ready to extract.
.
.
.
.
.
.
.
.
.
.
.
.
Fourier series kicker
would be located in a
bypass section.
kick
While damping, beam
follows the upper
path.
During injection/extraction, deflectors route beam through bypass
section. Bunches are kicked onto/off orbit by kicker.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
81
.
.
.
.
.
.
.
.
..
.
.
.
.
.
Damping ring .operation with an
FS kicker
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
...
.
.
.
.
.
.
.
.
.
.
.
.
.
fhigh +
(N-1)3 MHz
..
.
.
.
.
.
.
Original idea: kicker would be a series of 60 “rf cavities,” each
oscillating at one of the desired Fourier components. (60 cavities
would allow the damping ring to fit into the Tevatron tunnel.)
A bunch “sums” the impulses as it travels through the system.
There are lots of cavities, but they’re all nearly the same.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
82
.
.
.
.
.
extraction path
.
fhigh +
6 MHz
.
.
..
.
.
. .
.
.
fhigh +
3 MHz
.
.
.
fhigh
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
kicker rf cavities
.
.
. .
.
.
.
. .
.
.
.
. .
.
.
.
.
.
..
.
injection path
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
So what is it, actually?
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
Summing signals in a. single cavity…
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
..
.
.
.
.
..
.
. .
.
..
.
.
.
.
.
.
.
.
.
.
Well
yes, maybe…
.
.
.
.
.
.
.
.
.
.
.
.
.
• dumb: build a 3MHz cavity and drive it so that multiple modes
are populated. (cavity is huge, lots of modes to control…)
..
.. .
.
.. .
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
. .
Physics
P
llinois
.
I
• promising: launch different frequencies down a long
(dispersive) waveguide to a low-Q cavity. Send the frequency
with slowest group velocity first, fastest last. Signals arrive at
cavity properly phased to make a short pulse. Q ~ 25 cavity can
support an acceptable range of frequencies. (This was originally
Joe Rogers’ idea.)
83
.
.
.
.
.
.
.
.
.
.
.
.
.
Is there another way to sum the
Fourier
.
..
.
. .
.
.
components? .
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
. .
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
Combine this. with a pulse compression system
to drive a small number
.
.
.
of low-Q cavities.
.
.
.
Illinois, Fermilab, Cornell are involved.
.
.. .
.
.. .
.
.
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
84
.
.
.
. of its .
..
. .
.
Instead
of a. pulsed
kicker,
construct
a kicking
pulse... from a sum
.
.
.
.
.
. .
.
.
.
.
.
.
.
Fourier
components.
.
.
. .
. .
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
Fourier series pulse compression
kicker
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
. of
.
.
Unlike
Fourier
series kicker, in . which bunches.
the. effects
.
. .
.
.
. .
. .
. sum.
different
frequencies,
this
design
uses
the
to
form
the
. cavity
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
System is linear, so low-power tests can be used to evaluate
concept.
(Fermilab is interested in pursuing this.)
Programmable function generator can be reprogrammed to
compensate for drifts and amplifier aging.
Underway: studies of how sensitive kicker is to parameter errors,
noise, and nonlinearities.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
85
.
.
.
.
.
.
.
“sum”
.
.
.
.
. .
.
.
. .
.
..
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
Pulse compression kicker
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Into wave
guide last
.
8
7
1
10
9
2
1.3
10
2
9
3
10
3
9
4
10
4
9
5
10
9
5 GHz
....
. ..
. . .
. .. .
. .
. .
.
.. .
.
.. .
.
.
.
..
George Gollin, University Based Linear Collider R&D, March, 2005
. .
.
.
.
86
.
.
.
.
.
.
.
.
vs . frequency
.
8
.
.
.
.
.
0
I
.
.
..
8
0
Physics
P
llinois
.
10
. .
.
5
.
..
10
.
.
1
..
.
.
.
10
.
1.5
.
.
.
.
0.5 c
Into
.
guide
first
.
10
.
wave
.
2
8
.
.
10
velocity
. .
.
2.5
.
group
.
.
.
.
.
.
.
. .
.
..
.
.
.
.
.
c
.
. .
.
guide.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
1.3
GHz cutoff
frequency
wave. .
.
. .
.
.
.
.
.
Group velocity vs. frequency
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
kicker
.
.
.
.
.
.
..
.
.
.
cavity
.
.
.
.
.
.
. .
.
.
.
. kicker
.
.
.
(dispersive)
wave guide
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
. .
.
function. .
RF
.
generator. amplifier
.
.
.
.
.
..
.
.
.
Cavity center.
frequency is 600 times.
linac frequency, 10
times damping ring
frequency.
.
.
.
.
.
.
.
.
.
..
.
Kicker
cavity
. field for.
.
.
. .
~6. ns. bunch spacing.
.
.
.
..
.
.
.
.
.
.
..
.
.
fields
0.75
Field inside cavity
0.5
kicker fields ,
10 ns
1
0.25
0.5
-1.5
10
-7
-1
10
-7
-5
10
-8
5
10
-8
1
10
-7
1.5
10
-7
-0.25
-1 10
-8
-5 10
-9
5 10
-9
1 10
-8
-0.5
-0.5
....
. ..
. . .
. .. .
. .
. .
.
.
.. .
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
.. .
.
.
..
-1
. .
-0.75
.
I
Physics
P
llinois
±10 ns
87
.
.
.
.
.
Trace
the signal from kicker back
to amplifier
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
end of waveguide
fields
including
.
.
.
.
.
..
.
.
.
. .
.
.
.
.
.
.
.
..
downstream
cavity
.
.
.
.
.
.
. kicker
.
.
.
.
.
.
.
.
.
.
.
(dispersive)
wave guide
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
..
.
downstream
. .
.
.
.
Waveguide peak
field
.
is about 1/10 that
inside the cavity.
Note phase shift
relative to cavity
field.
.
function. .
RF
.
generator. amplifier
.
.
.
.
.
.
.
.
..
.
.
Wave
guide. field
at
.
.
. .
cavity
entrance.
. .
.
.
.
..
.
.
.
.
.
.
..
.
.
cavity
response
0.1
end of waveguide
fields including
cavity response
0.05
Wave guide field at
cavity entrance
0.1
0.05
-1.5
-1 10
-8
-5 10
-9
10
-7
-1
5 10
10
-7
-9
-5
1 10
10
-8
5
10
-8
1
10
-7
1.5
10
-7
-8
-0.05
-0.05
.
.. .
.
.. .
.
.
.
..
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
. .
±10 ns
.
I
Physics
P
llinois
-0.1
88
.
.
.
.
.
Field
at the downstream end of the
wave guide
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
fields
.
.
.
.
.
.
fields including
.
.
.
.
.
.
.
..
.
.
.
.
Wave guide field at
z = 45 meters
cavity
.
.
.
.
. .
.
end of waveguide
.
. kicker
.
.
.
.
.
downstream
.
.
.
.
.
10 % from
end of waveguide
.
.
.
(dispersive)
wave guide
.
.
..
.
10 % from downstream
.
.
.
.
Note incomplete
pulse compression at
this point.
. .
.
.
.
.
.
.
.
.
.
.
. .
.
. .
.
function. .
RF
.
generator. amplifier
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
Wave
guide. field
.
.
. .
90%
down
the
length
. .
of the. wave guide..
.
.
.
.
..
.
.
.
.
.
.
..
.
.
including
cavity
response
0.06
0.04
cavity response
0.06
0.02
0.04
0.02
-1.5
1 10
-8
2 10
-8
10
-7
3 10
-8
-1
4 10
10
-7
-8
-5
5 10
10
-8
5
10
-8
1
10
-7
1.5
10
-7
-8
-0.02
-0.02
-0.04
-0.04
0 - 50 ns
....
. ..
. . .
. .. .
. .
. .
.
.
.. .
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
.. .
.
.
..
-0.06
. .
.
I
Physics
P
llinois
-0.06
89
.
.
.
Field 4/5 of the way down the. wave guide
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
(dispersive)
wave guide
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
50 % from
downstream
end of waveguide
fields
.
.
.
..
.
.
.
.
.
.
..
.
cavity
.
.
.
.
.
.
. kicker
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
. .
.
.
..
function. .
RF
.
generator. amplifier
.
.
.
.
.
.
.
.
Wave
guide field
.
.
. .
.
50% .down
the length
.
.
of the wave guide.
.
.
.
.
.
.
.
.
..
.
.
.
including
cavity
response
Wave guide field at
z = 25 meters
0.02
0.01
5
10
-8
1
10
-7
1.5
10
-7
2
10
-7
2.5
10
-7
3
10
-7
-0.01
.
.. .
.
.. .
.
.
.
..
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
. .
.
I
Physics
P
llinois
-0.02
90
.
.
.
.
.
.
.
.
.
.
.
.
Field half-way down the wave
guide
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
upstream
end of waveguide
fields
including
cavity
.
.
.
.
.
.
.
.
..
.
.
.
. .
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
cavity
.
.
.
.
.
.
.
. kicker
.
.
.
.
.
response
0.015
0.01
..
.
.
.
.
.
.
0.005
Pulse compression,
plus energy storage
in the cavity!
1.5
10
-7
2
10
-7
2.5
10
-7
3
10
-7
3.5
10
-7
4
10
-7
-0.005
-0.01
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
-0.015
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
91
.
.
.
.
.
.
.
(dispersive)
wave guide
.
.
.
.
.
.
.
.
. .
.
.
. .
.
.
..
Note that peak field
is about .018 here, in
comparison with 1.0
inside cavity.
.
.
Field at upstream
end
.
of the wave guide.
.
. .
.
.
.
.
.
.
function. .
RF
.
generator. amplifier
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Field at entrance to the wave
guide
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
Initial
studies:
MeV
e.-) .for
.
. Fermilab A0. photoinjector .beam (16
.
. use
.
.
. .
. .
.
.
.
studies:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1. concept and design studies of FSPC kicker
.
.
.
.
.
.
.
.
..
.
.
.
.
.
2. build a fast, simple strip line kicker
3. use the stripline kicker to study the timing/stability
properties of the A0 beam
4. build a single-module pulse compression kicker
5. study its behavior at A0
6. perform more detailed studies in a higher energy, low
emittance beam (ATF??)
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
92
.
.
.
.
.
.
.
. .
.
..
.
. .
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
Fermilab/Illinois activities
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.. .
.
.
..
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
I
Physics
P
llinois
.
.
.
.
.
.
.
.
. .
.
.
. .
.
.
. .
.
.
..
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.. .
.
.
.
..
93
.
.
Right
now: simulations
and RF. engineering
discussions…
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
..
.
.
.
.
.
.
.
.
. .
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
94
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
..
.
.
Physics
P
llinois
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
I
.
.
.
.
.
.
.
…and writing it. up so it is. clearly
described…
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
Modeling strategy is to study the consequences of:
• drifts in parameter values (e.g. Q of RF cavity)
• noise in RF power amplifier output signal
• nonlinearities: harmonic and intermodulation distortion
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
95
.
.
.
.
.
.
.
.
.
.
• Waveguide
• RF amplifier
• Arbitrary function generator
.
.
.
..
.
.
.
. .
.
. upstream:
Functional
units
to
.
. .in the system, .downstream
.
.
. .
. .
.
.
.
.
.
• RF
cavity, Q. = 25 . .
.
.
.
.
.
..
.
.
. .
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
Performance
modeling
studies
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
A(0)
(100 ± .07) Gauss-meters
Desired off field integral
A(t)
(0 ± .07) Gauss-meters
fDR / fL
N
60
fRF / fDR

N
10.25
dB or tB
±6 mm ~ ±20 ps
☺
Impeccable
Karma
.
Physics
P
llinois
Nothing has been optimized yet!
.
.
.
Bunch length
615
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
.. .
.
.
.
Desired on field integral
.
.
.
.
.
.
.
.
1300 MHz
.. .
..
.
.
..
fcutoff
..
.
Waveguide cutoff frequency
.
. .
.
.
.
25
. .
.
.
Q
fRF / fL
.
.
.
.
.
MHz
.
.
.
.
. 1845
.
.
.
.
.
.
180 MHz
.
.
.
.
.3 MHz.
.
96
.
.
.
.
.
.
.
Value
.
.
.
..
.
.
.
RF structure Q
.
.
RF structure center frequency
.
. .
.
.
. . Symbol
.
.
.
fL . (L ≡. 2p fL)
.
fDR (.DR ≡ 2p fDR)
..
fRF (RF ≡ 2p fRF)
. .
.
.
.
Damping ring bunch
.
. .
.
frequency
.
.
.
..
frequency
.
.
.
.
.
.
.
.
.
..
.
.
I
.
. .
bunch
.
.
.
.
.
.
.
.
Main linac
.
.
Parameters
in
our
studies
.
. Parameter.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
• Q = 25
• center frequency 1845 MHz
.
.. .
.
.. .
.
.
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
97
.
.
.
.
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
. .
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
RF
cavity
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.. .
.
.
.
..
.
.
. .
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
. .
.
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
•80. meters
long
.
.
.
•1300
MHz. cutoff
Physics
P
llinois
..
.
.
.. .
.
.
.
.
98
.
.
.
.
.
.
.
.
I
.
Waveguide: 80 meters long for the
. time being
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
Maximum amplitudes:
•entering ~0.016
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.. .
.
.. .
.
.
..
.
I
Physics
P
llinois
~0.1
. .
•exiting
99
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Pulse compression! .
.
.
.
.
. .
.
.
. .
.
. .
.
.
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
Waveguide compresses pulse
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. .
.
..
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
.. .
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
..
. .
.
.
.
.
Effects of an amplifier gain error that grows linearly with
frequency. The curves represent the difference between
delivered and ideal impulses as functions of time. The time
region in the plot is centered on the arrival time of the kicked
bunch.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
100
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
. .
.
..
.
.
.
.
.
.
.
.
..
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
For now, look
at a
.
linearly increasing
error as a function
of frequency…
Physics
P
llinois
.
.
.
.
.
I
Amplifier gain error.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
.
.
.
.
I
Physics
P
llinois
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
101
.
. .
.
.
.
Model
as flat
from. 300
to 6 GHz
is
.
. for now. Cavity
.
.
. .
. in frequency,
.
.
.
.
.
.
-4 GHz.-1/2 . .
.
.
insensitive
to . frequencies
far
from
center
frequency…
10
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
MHz
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
Amplifier noise…
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.
.
.
.
.
.
.. .
.
.. .
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
..
..
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
102
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
..
.
.
.
.
.
.
.
I
Physics
P
llinois
.
. .
..
.
.
.
.
random phases.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
Generate
in. 300
kHz . frequency
bins,
.
..
.
.
.
.
.
.
.
.
More. work is needed… . .
.
.
.
.
.
..
…amplifier noise
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
f
f
f
..
.
.
.
.
.
.
.
.
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
....
. ..
. . .
. .. .
. .
. .
..
.
.
.
.
.
f
.. .
.
. .
.
.
.
.
.
.. .
.
.
.
.
.
Physics
P
llinois
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
. .
.
.
.
. are. done. Now working
.
Initial. .harmonic .distortion studies
on
. .
.
.
.
.
.
.
.
.
intermodulation
distortion
. simulation.
..
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
103
.
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
I
.
.
Nonlinear effects: harmonic and intermodulation
.
..
.
. .
.
.
distortion
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
. .
.
.
.
.
.
.
..
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
..
. .
.
.
. are calculable
Start with. a. simple
kicker
whose
properties
and can
.
.
.
.
. be.
.
.
.
.
.
.
.
.
.
. . its effects
. .
measured
independently of
on
the
A0
electron
beam.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. amplitude and
Most important: how. well can we measure a device’s
timing stability with the A0 beam?
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
flanges
beam pipe
BPM
conducting rods
.
.
.
George Gollin, University Based Linear Collider R&D, March, 2005
.. .
.
.
.
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
.. .
Fermilab just finished building this. We’ll install it in a few weeks.
..
stainless steel
pipe
BPM
.
BPM
. .
BPM
beam pipe
104
.
.
.
.
.
.
.
Building a stripline . kicker to . understand
the A0
beam
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
..
.
.
.
.
.
.
.
. .
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
105
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
I
Physics
P
llinois
.
.
.
.
.
. .
.
.
.
. .
.
.
.
. .
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Measuring electrode positions
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.. .
.
.. .
.
.
..
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
106
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
. .
.
..
.
.
.
.
.
.
.
.
I
Physics
P
llinois
.
.
.
.
.
.
.
.
.
.
. .
.
. .
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
Building
a
stripline
kicker
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.. .
.
.
..
. .
.
.
..
.
.
.
.
.
.
.. .
.
.
.
.
. .
.
.
.
.
107
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
I
Physics
P
llinois
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
. it. .
Chris
Jensen and
colleagues just. finished
.
.
.
.
.
.
. .
.
.
HV pulser: ±750
V.
.
.
.
. .
.
. .
.
.
..
.
.
.
..
.
.
.
.
.
.
.
chopper.
.
.
..
.
.
.
.
.
.
. a Fermilab linac
. Start with
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
HV pulsers
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.. .
.
.
.
..
.
.
.. .
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
. .
.
.
.
.
.
108
.
.
. .
.
.
.
.
.
.
.
Physics
P
llinois
.
.
.
.
.
.
Gerry Dugan
is ordering a FID
pulser:
.
.
. .
.
.
.
. .
. .
.
. ±1. kV
.
•
Maximum
output
into
50
Ohm:
.
.
.
.
.
.
.
.
.
• Amplitude
.stability in burst mode 0.3 –. 0.5%
.
• Pre- and after-pulses 0.3 – 0.5%
• Rise time 10-90% of amplitude 0.6 – 0.7 ns
• Pulse duration at 90% of Umax 2 – 2.5 ns
• Fall time 90-10% of amplitude 1 – 1.5 ns
• Maximum PRF in burst mode 3 MHz
• Maximum PRF in continuous mode 15 kHz
• Timing jitter, both output pulses vs. trigger 20 ps,
max
• Power 110/220VAC, 50/60 Hz
.
.
.
..
.
.
I
. .
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
FID pulser
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.. .
.
.. .
.
.
..
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
. .
.
.
.
.
.
.
.
.
.
109
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
I
Physics
P
llinois
.
.
.
.
.
.
.
.
. .
.
.
. .
.
. .
.
.
.
.
.
.
.
..
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
UIUC students in A0.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
last spring.
.
.
.
. .
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
EOI submitted
to A0
.
.
group
.
.
.
..
.
. .
.
.
.
.
.
.
. .
.
.
.
.
.
.
.
.
.
. .
.
Space in beamline will be available ~April 2005
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
110
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
. .
.
.
.
.
16 MeV electron
beam,
good
spot
size,. emittance.
.
.
.
.
.
.
Test it in the FNAL A0 photoinjector
beam
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
. data
.
Our. plan is to generate
simple
Monte
Carlo
to test tools
.
.
.
.
..
.
before we have
real data.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
We bought a new computer:
.
.. .
.
.. .
.
.
.
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
111
.
.
.
.
.
.
.
..
.
.
.
. .
.
.
.
.
.
.
.
tools.
. .
.
.
..
. .
.
.
.
.
.
.
.
.
.
analysis
.
.
.
.
.
.
.
..
.
.
.
.
.
…but
we’ve
on. .
.
. started .working
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
No data yet…
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
. ..
. . .
. .. .
. .
. .
.
.
.
.
.. .
.
.. .
.
.
..
.
.
. .
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
I
Physics
P
llinois
.
. .
..
.
.
.
.
.
.
.
.
.
. .
.
.
.
.
. .
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
..
.
112
.
.
.
We
started looking at (old) straight-through
A0 data
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
involved
.
.
.
Fermilab RF
group is
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
UIUC HEP electronics design group’s chief is too.
So we’re making progress.
Goals:
• install strip line kicker in A0 during April, 2005
• understand A0 by summer, 2005
• investigate small pulse compression system during summer, 2005
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
113
.
.
.
.
.
.
.
.
..
. .
.
.
.
.
Design, then
build
one
module
components.
.
.
.using existing
.
.
.
.
. .
.
.
.
.
. .
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
UIUC/FNAL,
longer
term
plans
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
Funding is uncertain, but not nearly as bleak as one might think.
The technical challenges are interesting, engaging, daunting.
.
.
.
.
.. .
.
.. .
George Gollin, University Based Linear Collider R&D, March, 2005
..
.
.
. .
.
I
Physics
P
llinois
....
. ..
. . .
. .. .
. .
. .
114
.
.
.
.
.
.
.
..
.
.
.
.
.
. .
.
.
.
.
.
.
. .
.
.
..
.
.
.
.
.
.
.
.
.
.
There
is a lot going
on..
.
.
. .
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
Conclusions
.
.
.
.
.
.
.
.
.
.
.