. . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . .. . . . . . George Gollin Department of Physics University of Illinois at Urbana-Champaign USA [email protected] . . . . ..
Download ReportTranscript . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . .. . . . . . George Gollin Department of Physics University of Illinois at Urbana-Champaign USA [email protected] . . . . ..
. . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . .. . . . . . George Gollin Department of Physics University of Illinois at Urbana-Champaign USA [email protected] . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . University-Based Linear Collider Accelerator R&D in the United States . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . .. . . . . . . . . • Physics at the International Linear Collider, . . briefly . . . . . . . . . . . . . . . . . . . . . • The ILC accelerator • Political matters, briefly • Doing accelerator physics at a university . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 2 . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . The.. matters at hand . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . Physics at the International Linear Collider, briefly . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 3 . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . • Electroweak symmetry breaking is mediated by . . . . . something that almost certainly will reveal. itself in the 100 GeV to 200 GeV mass range. . . . . . . . . . . • If nothing is there, the wheels come off the bus. Everything goes crazy. • Even if there’s a higgs, there are enormous cosmological constant problems without something else (SUSY?) . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 4 . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . We have all . heard this many. times: . . . . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . .. . . . . . . Physics at the ILC. . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . Both have been . . necessary. . . . . . . The role of LEP in refining our understanding of the Standard Model is an example. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 5 . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . .. . . . . . . measurements Precision and discovery experiments: . . . . . . . . . . . . . . . . . . . .. . . . . . . . Physics at the ILC. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . http://pdg.lbl.gov/2002/higgs_s055.pdf . .. . . . . .. . . .. . . George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . . . . I Physics P llinois We see these plots all the time. 6 . . . . . . . Not too much of this sort of thing today… .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . …is. mixed. Our confidence in. our predictions is. influenced . . . . . . . . . by our optimism! . . . . . . . . . . . . . . . . . . . . . . . . • SU(5) and proton decay • value of / in K pp decay (direct CP violation) We will need both LHC and ILC to understand the physics of electroweak symmetry breaking . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 7 . . . . . . . Our success at.. predicting the unknown… . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .... . .. . . . . .. . . . . . . . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . 8 . . . In stock and .on sale! . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . I . We may be closer than. we think .. . . . Physics P llinois . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . .. . . . Dark matter: 22.6% Standard Model Physics: 4.4% We will need a goodly amount of data to understand things. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 9 . . . . . . . . . . . . . . . . 73% Dark energy: . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . .. . . . . . .. . . . . . . . . . . . Who are we kidding? . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . The ILC accelerator . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 10 . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. . . Recommendation . . . . . . .. . . . .. . . . . . The International Technology Panel’s report was . . . . .. . . . . . . . . . recommended . . . . development of .a cold released in September, 2004. It . . . . . . . . . . . . . design. (Barry Barish chaired the .panel.) . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . •…large cavity aperture and long bunch interval simplify operations, reduce the sensitivity to ground motion,... •…main linac and rf systems… are of comparatively lower risk. •…construction of the superconducting XFEL free electron laser will provide prototypes and test many aspects of the linac. •…industrialization of most major components… is underway. .... . .. . . . . .. . . . . . . •…superconducting cavities significantly reduce power consumption. . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois 11 . . .. . . . ITRP recommendation: September, 2004 . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . Old figure, from TESLA documents. Design is a little different now. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 12 . . .. . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . The International Linear Collider .. . . . . . . . . .. . . . . . . . . . . . . . . . 1.3 pulses/second 5 bunches/pulse 2820 bunches/second 14,100 peak luminosity (1033 cm-2 s-1) 34 accelerating gradient (500 GeV) 23.4 MV/m accelerating gradient (800 GeV) 35 MV/m . . . (Table content from Tom Himel, SLAC) George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . .. . . . . RF frequency (GHz) . . . . 11.3 .. . . . . beam power (MW) .. .. 21010 . . . particles/bunch . . . . . . 500 - .1000 . . . . . . . I Physics P llinois energy (GeV) .. value . . . . . . .. . . . . . . . . . . . . . . parameter. . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . 13 . . . . . . . . . . . . . .. . . . Linear Collider design, summarized in 2 .slides…... . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . in flux)… ILC parameters, briefly (still . . . . . . . . . . . . . . . . . . . . . . . . 337 . . . . . . . . . . . . . . . . .. . . . . . . . . . . linac total length (km) 33 linac mechanical tolerances ~300 mm damping ring circumference (km) 17 RF structure temperature (°K) 2 sx / sy at IP (nanometers) 553 / 5 . .. . . . . . . . Different RF frequencies: tighter mechanical tolerances for warm (NLC) design than cryogenic (TESLA) design. . . .. . . . . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . .. (Table content from Tom Himel, SLAC) .... . .. . . . . .. . . . . . . . Physics P llinois . I Different bunch spacing: warm and cold design damping rings are very different. 14 . . . . . . . . . . (nsec) .. . . . . inter-bunch spacing . 34 . . . . . . . . value .. . . . . peak luminosity (1033. cm-2 s-1) . . . . . . . . . . . .. parameter . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . … ILC. parameters, briefly. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . Cryogenic “unit . . . . length” is ~2.5 km . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . .. . . . . . . . . TTF . .. . . .. . . . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 15 . . . . . . . . . . . . . . . . . . . . (From TESLA TDR) . .. . . . . . . . . . . .. . . . . . . . . . TESLA main. linac . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. ILC main linac . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . .... . .. . . . . .. . . . . . . . . . . .. . . .. . . . .. . (From TESLA TDR) (From TESLA TDR) . . . . 16 . . . . . . . . . . . . . . . . .. . .. . . . . . . . . • Niobium, 1.3 GHz cavities . I . . . . . .. . . . . requires 23.4 MV/m gradient (theoretical limit is 50 MV/m) . . . . . . . . . Physics P llinois . . . . .. . . . . . . . . . .. . . • 500. GeV . . . . . Accelerating . . . . structures: . . . . . . . . . . . . . . . . . .. ILC rf cavities . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. .. . . . . . . . . . . . . . . . . . . . . . (M. Liepe, http://www-conf.slac.stanford.edu/alcpg04/Plenary/Wednesday/Liepe_ColdMachine.pdf ) . . . . . . . . .. . . . . I Physics P llinois . 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . Recent progress is . even better:. . 42 MV/m now! . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . RF. cavity gradients. . . . . . . . . .. . . . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . .. . . . . (click to play movie) . . . . . . . . . . I Physics P llinois . . . . . . Long bunch spacing (337 nanoseconds) is necessary. . . .. . . . . . .. .. . .. . . . . . .. . . . Bunch length ~20. picoseconds so lots of modes . can be excited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . persist. High-Q (superconducting) structures: induced fields .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Wake fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . . . . a 17 km circumference damping ring .(!!) TESLA design called for .. . . . . . . . . . . . . . . “Dogbone” shape would put most of it in the main linac tunnel but: • access for repairs is not possible when linac is powered • stray fields from RF system klystrons may disrupt DR beam Why is it so long? Because… . .. . . .. . . . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . . .. . . . . . . . . . . . . Damping ring designs . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ILC main linac beam:. . . .. . . . . . . . . . . . . . . . . . • 2820 bunches, 337 nsec. spacing (~ 300 kilometers) . . . . . . . . . . . . . . • Cool an .entire pulse in the damping rings before linac injection .. . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . Damping ring beam (TESLA TDR): • 2820 bunches, ~20 nsec spacing (~ 17 kilometers) • Eject every nth bunch into linac (adjacent bunches are undisturbed) Kicker speed determines minimum damping ring circumference. Large circumference is worrisome. Tricky beam dynamics? Wigglers used to cool beam: ~400 m of them. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 20 . . . . Original design: 17 km circumference . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . If so, a smaller damping ring would be possible. . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . The problem with the kicker: it is hard to turn on/off quickly. Two approaches we’re exploring: 1. brute force: hope someone invents a robust, faster HV switch. 2. invent a new kind of kicker that is always running. . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . I Physics P llinois .... . .. . . . . .. . . . . . . . In tandem with kicker studies we’re investigating a damping ring lattice for a 6 km ring. 21 . . . . . . . . . . . . . . . . . . . . . . . . What if we a. faster kicker? .. . . how to make .figured out . . . . . . . . . . . . . .. . . .. . . .. . . . . . . . . . . . Kicking in new ways . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . pulses traveling . . A bunch “collides” with electromagnetic in the . . . . . . . . . . . . . . . to . opposite direction inside a. series of. traveling wave structures. Hard . . . . . . . . . . . . turn on/off fast enough. . . . . . . . . . . . . . . . . . . . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . . . .. . . . . . I .... . .. . . . . .. . . . . . .. . . . . . . . .. . . Fast kicker specs (à la TESLA TDR): • B dl = 100 Gauss-meter = 3 MeV/c (= 30 MeV/m 10 cm) • stability/ripple/precision ~.07 Gauss-meter = 0.07% Physics P llinois . . . . . . 22 . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . Brute force: stripline kicker . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 1. N cos k0t 2 k 1 1 sin N 0t 2 1 2 sin 0t 2 . . . . . . . . . . . . . . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . .. llinois . I .... . .. . . . . .. . . . . . .. . . .. Note the presence of evenly-spaced “features” (zeroes or spikes). Physics P More on this later. . . . . . . .. . . . . . . . . . . 23 . . . . . . .. . . . . . . . . . . . . unkicked bunches traverse kicker during zeroes in the field integral . . N=16 . . . . . . . . . .. . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . More clever (too clever?):. Fourier . .. . . . . representation of a periodic d function . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . ILC . main linac .beam: . . . . . . . . . . . . . . • 2820 bunches, 337 nsec spacing (~ 300 kilometers) . . . . . . • Cool an entire pulse in the damping rings before . linac injection . . . . . . . . .. . . . Damping ring beam (FNAL/ANL/UIUC): • 2820 bunches, ~6 nsec spacing (~ 6 kilometers) • Eject every nth bunch into linac (adjacent bunches are undisturbed) Similar damping time, but higher current. Initial studies indicate that various instability issues are tractable. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 24 . . . . . . . . . .. . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . Fermilab/ANL/UIUC 6 km ring . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . Comparison of small ring and. dogbone designs .. . . . . . . . . . . . .. . . . . . . . . .. . 6.12 km 8 mm·mr 0.02 mm·mr . . . . . . . . . . . +/e.-) . +/e. -) Small ring (e Dogbone (e . . . . . . . . . . 5 GeV 5 GeV . . . . 17 . km 8 mm·mr 0.02 mm·mr .. . . . . . . Transverse damping time td 28 ms / 44 ms 28 ms / 50 ms Current Energy loss/turn Radiated power Tunes Qx, Qy 160 mA 21 MeV / 12 MeV 3.2 MW / 1.8 MW 72.28, 44.18 -125, -68 . .. . . .. . . . . .. . . George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . . . I Physics P llinois . Chromaticities x, y 443 mA 7.3 MeV / 4.7 MeV 3.25 MW / 2.1 MW 62.95, 24.52 -112, -64 25 . . . . . . . . Horizontal emittance gex Vertical emittance gey . . . . Circumference . .. . . . . . . . . . Energy . . . . . . . . .. . . . . . . .. . . . . . Parameter . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . . The. present lattice design of the small damping ring uses . . 25 . . . . . . . wigglers, so the beam dynamics issues associated with wigglers will . . . be less complex. . . . . . . . . . . Preliminary studies (results in the tables a few slides back) indicate that the small ring is stable. The present lattice has six straight sections. This will allow inclusion of distributed correction schemes which address dispersion, coupling, higher order multipole corrections, and so forth. . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . I Physics P llinois .... . .. . . . . .. . . . . . . . It will take a sustained, continuing effort to make steady progress. 26 . . . . . . . . . . . . . . . . . . . . . Comments about a small damping ring .. . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . . . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. .. . . . . . . . . . . . . . . . I Physics P llinois . .. . . . . . . . . . .. 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . .. . . . . . . . . . . . . Much more detail about kickers later in this talk… . . . . . . . More information in a short while .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . Political matters, briefly . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 28 . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . Antonio Gramsci 1891 – 1937 Prison Notebooks (“Hegemony”) . . . . Williams, 1992: 27 in http://www.theory.org.uk/ctr-gram.htm) . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 29 . . . . . . . . . . 2. “The key to 'revolutionary' social change in modern societies does not therefore depend, as Marx had predicted, on the spontaneous awakening of critical class consciousness but upon the prior formation of a new alliance of interests, an alternative hegemony or 'historical bloc', which has already developed a cohesive world view of its own.” (quoted by M. Stillo from . . . . . . .. . . . . . . 1. The evolution of events is chaotic, not smooth. . . . . . . . . . . take We to . quickly . . must be ready to act . . . . . . . . advantage of opportunities that may arise. .. . . . . . . . . . . . .. . . .. . . .. . . . . . . . . . . Will it ever get built?. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 1. . “RIA for. .Illinois”. task force run the Illinois Department for . . .. . . . . . . . . . . Economic Opportunity (DCEO). Argonne, . Commerce and . . . . . . . . . . . . . . Fermilab, and. Illinois Universities are major . participants. . . . . 2. Considerable strengthening of the Fermilab – Argonne alliance has taken place in recent months. 3. RIA, ILC, proton driver, and APS direct injector linac are all superconducting machines that could be built in Illinois. DCEO appears to understand that a wider scope for its RIA advocacy is appropriate now. This is still evolving. 4. Continuing discussions with DCEO are important and are occupying some of us. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 30 . . . . . . . . . . . .. .. by. . . . . . .. . . . . . . . . . . State of Illinois efforts. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . has now stated. that. the U.S. proposal . to become Office of Science . . . . . . . . . . forth Fermilab the ILC host country will. put as .the host laboratory. . . . . . . . . . . . . . . . .. . . . . Apparently OS would like to see a significant reduction in total project cost relative to what we presently expect ILC to cost. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 31 . . . . . . . .. . . . . . . . . . . . . . . .. . . . .. . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . .. The federal scene . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . Doing accelerator physics at a university . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 32 . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . Many university HEP groups have concentrated on detector . . projects, perhaps because they believe these are: . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . Accelerators are BIG, EXPENSIVE devices. . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . • more suitable in scale for a university group • more practical, given their prior experience in detector development. Is this really true? Should university groups stay away from accelerator physics projects? . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 33 . . . Can. university groups do accelerator physics? .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . There are interesting, important projects . whose .scope is . . . . . . ideal for .a university group. . . . . . . . . . . . . . . . . . . . . . . . The (inter)national labs welcome our participation and will help us get started, as well as loaning us instrumentation. Many projects involve applications of classical mechanics and classical electrodynamics. These are perfect for bright, but inexperienced undergraduate students. The projects are REALLY INTERESTING. (Also, it’s fun to learn something new.) . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 34 . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . can do Of course university groups .. . . . .physics! accelerator . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . January, 2002: . . .. . . . . . . . . . . . . . . . • FNAL was focused on Run II problems. . LC wasn’t on . . the lab directorate’s radar. . . . . .. . • most university LC groups were already affiliated with SLAC; most were doing detector simulations. • there was little planning underway to attract new groups (for example, with Fermilab orientations). That’s not good! . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 35 . . . . . . . Engaging the ..university HEP community . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . Fixing we’re not lab employees, we . . . . this: we’re professors, . . . . . . . . . . can do things without asking permission, they can’t fire us. . . . . . . . . . . . . . . . . . . . . . . April - May, 2002 workshops at FNAL, Cornell and SLAC: • meetings focused largely on concrete R&D topics • Purpose: introduce university physicists to R&D issues suitable for university groups. (We really like doing lab work!) • almost no Higgs sensitivity vs. stuff talks (at least not at FNAL). . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 36 . . . . . . . Engaging the ..university HEP community . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . Tom. Himel (SLAC) was the hero of. the .workshops: he . . . . . . . . . assembled a list of accelerator projects for us to consider. . . . “The List” included NLC and TESLA projects. . . . . . . . . . . . . . . . . . These workshops ultimately led to a 50% increase in university participation in LC R&D. About half of the new participants took on accelerator projects! . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 37 . .. . . . . . . . . . . . . . Fermilab, Cornell, SLAC workshops . . . . . . .. . . . . . . . . . . . . . . . . . . physicist . skill_type . . . . . . . . . . . . . .. . . . Acoustic . . sensors for structure. . . . . . . . . . . . . . . . .. . . . . . . . Detailed project description understand the acoustic emissions from breakdowns and how the sounds propogate so that the use of acoustic sensors can improved in diagnosing breakdowns. Needed by whom NLC and TESLA present status In progress, help needed Needed by date 6/1/2003 .. . . .. . . . . .. . . George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . . www-conf.slac.stanford.edu/lcprojectlist/asp/projectlistbyanything.asp . I Physics P llinois (650)926-3526, [email protected] . . Contact Person Marc Ross, 38 . . . . . . . . .. . . . . . . . . . . short project . and DLDS breakdown. . . description . . . . . . . . . . project_size . . Medium . . . . . .. . . . .. . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . ID 61 . . An example from Himel’s. list… . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . . . . .. . . .. . . . . .. . .. . . . . . George Gollin, University Based Linear Collider R&D, March, 2005 . . . . . . . . more on this later… 39 . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . .. . . . . . I . . Physics P llinois . . . . . . . . . . . …and what we’re. doing with. it. .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . .. . . . . . . . . . . .... . .. . . . . .. . . . . . .. . . . . . . . . . . . . .. . . •low level RF Digital Feedback Hardware . . . . . . . . . . for RF System . •Exception Handling . . . . . . . Guide Tuner Control . •TESLA Wave . . . . . . •Structure Breakdown diagnostics •active vibration stabilization of Final Doublet •Linac accelerator structure cooling without vibration •Acoustic sensors for structure and DLDS breakdown •beam profile monitor via Optical Transition Radiation •Very fast injection/extraction kickers for TESLA damping ring •RF BPM electronics, including tilt •5-10 kW magnet power supply •flow switch replacement •robot to replace electronic modules in tunnel •Programmable Delay Unit •linac movers: 50 nm step, rad hard •Low Level RF 500 MHz digitizer . . 40 . . .. . . . . . . . . . . . . Physics P llinois . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . .. . . . . I . . . . . . . . . . . . Sample accelerator projects . . . . . Here. are some of the ~110 items from Tom’s list: . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . Desired outcome: • broad range of projects without duplication of work. • collaboration among university groups would be possible, even when one is DOE funded, one NSF funded. • mechanism for informal oversight of progress (what’s working, what’s not?) . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to organize something like this? .. . . .. . . . . . . . . . .. . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . “Jump-starting” a university-based .. . . . . R&D program . . . . . . . .. . . . . . . . . . . . . . . . . . 8/02 . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UCLC proponents write “project descriptions” 9/02 9/02 10/02 . . . George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . .. . . . . . . proposal coordinators create new document combining revised LCRD and UCLC projects, then transmit to DOE and NSF. 10/02 .. . UCLC proponents revise project descriptions .. . . . separate accelerator and detector committees review proposed work for both agencies . . . 9/02 . . . .. proposal coordinators create one unified document combining LCRD and UCLC projects LCRD proponents revise subproposals Physics P llinois . . 42 . . . . . . . . . LCRD proponents write “subproposals” . .. . . . . . . . . . . write . . proponents 7/02 . . . descriptions . short project . . . . . .UCLC (NSF) . ALCPG working .group leaders offer. suggestions . . . . . for revision, collaboration with other . . groups, etc. . . I .. . . . .. . . . . . . . . . . . . . . . . . . . . . . We organized ourselves . . . .. .. LCRD (DOE) proponents write . . . . . short project. descriptions . . . . . . . . . . . . . . . . . . 71. new projects . . . . 47 . U.S. universities . . 6 labs . . 22 states 11 foreign institutions 297 authors 2 funding agencies two review panels two drafts 546 pages 8 months from t0 . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . .. . . .. . . . .. . . .. . *planning grant only . . . . Funded by NSF* and DOE 43 . . . . . . • • • • • • • • • • • .. . . . . . . . . . . . . .. . . . . . . . . Physics P llinois . . . I …renewal submitted November, 2003 …third year submitted February, 2005 . . . . .. . . . . . . . The result: . . . . . . . .. . . . . .. . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . The result, first year. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .... . .. . . . . .. . . . . . . . . . . . . . . .. . . .. . . . .. . . background image: Big Doc author list . . . . . . . 44 . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . (University of . Michigan) . . . . . . (Northern Illinois University) .. (Wayne State University) (Cornell University) (Fermilab) (University of Illinois) (SLAC) (SLAC) (University of Iowa) (Fermilab) (Cornell University) (Cornell University) (Fermilab) . . . . .. . . . . .. . . . . I Physics P llinois . . Dan . .Amidei . . Dhiman Chakraborty . Dave Cinabro Gerry Dugan Dave Finley George Gollin Tom Himel John Jaros Usha Mallik Shekhar Mishra Ritchie Patterson Joe Rogers Slawek Tkaczyk . . . . .. . . . .. . . . . . . . . . . “Proposal . coordinators”: . . . . . . .. . . . . . . . . Who the “we” is . . . . .. . . . . . . . . . . . . . . .. . . . . . $1,151. k . . . . . . . . . . . . . . . . . . $171 k 9 $238 k Vertex Detector 3 $119 k 3 $173 k Tracking 11 $396 k 11 $597 k Calorimetry 12 $515 k 13 $855 k Muon System and Particle ID 3 $149 k 3 $194 k Total 71 $2,354 k 68 $3,208 k Funding received from DOE ~$900 k ~$1,200 k Funding received from NSF $150 k it’s complicated . . . . . . Physics P llinois FY05 funds being worked out now. George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . .. . . .. . . 9 .. . . .. . . . 29 . $(04) . . . . . . . . . . . . # (04) . . . $1,003 k .. . . . $ (03) . .. . . . . . . I . . . Luminosity, Energy, Polarization 33 . .. . . . . . . Accelerator. Physics . . . . . . . . . . # (03). . . . .proposals to DOE + NSF. . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 45 . . . . . . . . . . Scope of U.S. university work in this initiative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . •Ground Motion: 1 •Control Systems: 1 •RF Technology: 5 . . . . .. . . . . . . . . .. . and . •Beam simulations other calculations: 6 . . . . . . . . . . . . . . . . . . . . . •Kickers, magnet technologies, mechanical support systems: 4 . . . . . . . . . . . . •Instrumentation and electronics: 9 . . . . . . . . . . . . . . •Non-e+e- collisions: 1 •Electron and positron source technology: 2 Let’s look in more detail at two of mine. . . . . .. . . .. . background image: acoustic wave in copper simulation .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 46 . .. . . . . . . . . . . . . . . . University. accelerator R&D. topics . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . .. . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . Can. .we learn more about . NLC rf cavity breakdown through acoustic . . . . . . . . . . events? . signatures of breakdown . .. . . . . . . . . . . . . At UIUC: . . . . . George Gollin (professor, physics) Mike Haney (engineer, runs HEP electronics group) Bill O’Brien (professor, EE) Jeremy Williams (postdoc) Erik Wright (graduate student) Joe Calvey (UIUC undergraduate physics major) Michael Davidsaver (UIUC undergraduate physics major) Justin Phillips (UIUC undergraduate physics major) . .. . . .. . . . . .. . . . . . I Physics PMarc Ross is our contact person at SLAC. llinois George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . 47 . . In of. acoustic of rf . . localization . more detail: “Investigation . . . . . . . . . . .. breakdown” . . . cavity (Illinois) . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . .. . design .for . complicated: . . . RF couplers The TESLA is RF flows in one . . . . . . . . . . . . .the other . . . end. (at room temperature), out end (at 2K). . . . . .. . . . . . . . . .. . . . . . . . . . Breakdown. in the couplers may prove to be an issue. . . . . . . . . . . . . . . . . . . . . . . What we have learned in studies of NLC structures should map into investigations of TESLA coupler breakdown. . .. . . .. . . . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 48 . . . .. . . . A note concerning. the warm/cold . . .recommendation . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . .. . . . . . . . We need to understand its acoustic properties. Start by pinging copper dowels with ultrasound transducers in order to learn the basics. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 49 . . . . . . . . . . . . . . . . . . Harry. Carter sent. us a five. cell structure. from Fermilab’s . NLC structure factory. . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . This is what we were studying . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . Copper dowels from Fermilab NLC Structure Factory . . . . . . . #2. is heat-treated… . . . . . . . . . .. . . . . . . . . . . . . …#1 is not. .... . .. . . . . .. . . . . . . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . I Physics P llinois . . . . NLC structures are heatbrazed together; heating creates crystal grains (domains) which modify the acoustic properties of copper. . . . . . . Harry Carter sent a pair of . . . us . . . . copper dowels from their . . . . . structure manufacturing stock: . one was heat-treated, one is untreated. .. . . . . . .. . . . . . . . . .. . . .. . . . . . . . . . .. . 50 . . . . . . . . . . . . . . . . . . . . . . . . . . transducer signal . . . . .. . . . . .. . . . . . Tektronix +WaveStar, also NI PCI-5112 + LabVIEW . .... . .. . . . . .. . . . . . . .. . . . . .. . . .. . . . . . . . . . . . . . .. . . . . . . . We can listen for echoes returning to the transducer which fires pings into the copper, or listen to the signal received by a second transducer. . . . . . . . trigger scope . . . . . . . . . . I #2 . . copper dowel . . . + . .. . . . . . Physics P llinois . . . . . .. . . . . . . . . . . . .. . . . . .. . . #1 . HV . . pulser . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . Transducer setup . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . . .. . . . . .. . . .. . . . . . . . . . . . . . . #2 . . . . . . . . . . . . . . .. . . .. . . . . . . . I . . .. . Physics P llinois . . . #1 . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . Transducer setup, on the bench . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . .. . . . . . . . .. . . . . . . . . .. . . . . . Piezoelectric behaves MHz oscillator. . . like .a damped 1.8 . . . transducer . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . A “ping” launched a copper dowel will bounce back and forth, . . . . . . losing energy through . . . . . . . into. . . . . . . . . . . . . . . . . . . • absorption in the transducer • scattering of acoustic energy out of the ping • absorption of acoustic energy by the copper. . .. . . .. . . . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 53 . . . Scattering/attenuation at 1.8 MHz in copper . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . baseline “noise” . . Single transducer: ping, then listen to as pulse . . . . . . . . . . . . . travels in copper, pumping . . energy .into acoustic baseline “glow.” . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . At ~5 mm per msec,. full scale corresponds to 12 m. acoustic path . inside the heat-treated (grainy) dowel. The “glow” lasts a long time. . . . 5 mV 100 msec .... . .. . . . . .. . . . . . . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . Full scale ~2.4 milliseconds. Lots of round-trips! . I Physics P llinois . .. 54 . . . . . . . . . Scattering is much. more important than attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . Speeds of propagation for pressure and shear waves are determined by k1, k2, and k1/k2. We use k2 = k1/2. . . . . . Our model: regular points . . . . (rectangular,. 2D,. 3D) grids. of mass . . . . . . . . . . connected by springs. Transducer is an array of points driven in. . . . . .. . damping. unison, with k1 . . . . . . . .. . . . . . . .. . . . . . . . . . . .. . . . k1 k2 k2 We can vary spring constants arbitrarily in order to introduce dislocations and grains: our grain boundaries have smaller spring constants. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 55 . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . Condensed matter, as done by folks in HEP . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . Note the different propagation speeds. . .. . . . . .. . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . . . Propagation of a 50% shear, 50% compression wave, . . . .. . . . . copper without grains . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . Note the different propagation speeds. . .. . . . . .. . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . . . Propagation of a 50% shear, 50% compression wave, . . . .. . . . . copper without grains . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . Note the disruption of the wave fronts due to scattering! . .. . . . . .. . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . . . Propagation of a 50% shear, 50% compression wave, . . . .. . . . . copper with. grains . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . Note the disruption of the wave fronts due to scattering! . .. . . . . .. . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . . . Propagation of a 50% shear, 50% compression wave, . . . .. . . . . copper with. grains . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . .. . . . . . . . . (We are presently refining our transducer modeling…) . .. . . . . .. . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . Simulated transducer response,. last year . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . movie plane excitation transducer . . . . .. . . .. . . . A flaw: transducers are TOO good. .. . I Physics P llinois .... . .. . . . . .. . . . . . . . transducer 61 . . . . . . . . . . . 4 “perfect” transducers, one . . . . . . . . . acoustic excitation spot. . . . . . . . . . . . transducer.. . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . transducer . . . .. 3-D model we’ve been working with . . . . . . . . . . . . . .. .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . knows . . . . . • transducer about individual motions of each of the . . . . . . individual mass points it touches (a real transducer returns a signal based on the average of all points) . . . . . • transducer returns velocity vector of surface points (ours don’t [though this kind exists]: we only measure the component normal to the transducer face Discarding information degrades our naïve reconstruction algorithm’s performance considerably. (This is what we’re working on now.) .... . .. . . . . .. . . . . . But here’s a look at our naïve approach anyway: it gives an idea of Physics Phow surprisingly well things work with very limited information. . .. . . .. . . . . .. . . llinois . I . . 62 . . . . . . . . . . . . . . . . . . . . Our general approach has been to assume “perfect knowledge” of . . . . . . . . . . . . . . . . . of the copper at the the behavior transducers: . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. The main difficulty…. . . . . . . . . . . . . . . . . . . .. . . . . .. . . . transducers “hear” . . . . . . . . . . .. . . . . . . . .. . We’ll record simulated. . it. . . then try playing . . . . what the . . . . . . . . . . back into the. copper to see if we generate a peak in the intensity . . . . . . . . . . . . . . . somewhere which corresponds to the original excitation. . . . . . . . . . . . .... . .. . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . (grain-free “Cu”) . . . . . . . . I . .. . Physics P llinois . . . . . . . . . .. . . . . . . Acoustic excitation, viewed in one horizontal slice . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . transducers “hear” . . . . . . . . . . .. . . . . . . . .. . We’ll record simulated. . it. . . then try playing . . . . what the . . . . . . . . . . back into the. copper to see if we generate a peak in the intensity . . . . . . . . . . . . . . . somewhere which corresponds to the original excitation. . . . . . . . . . . . .... . .. . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . (grain-free “Cu”) . . . . . . . . I . .. . Physics P llinois . . . . . . . . . .. . . . . . . Acoustic excitation, viewed in one horizontal slice . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . (grain-free “Cu”) . .... . .. . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . Physics P llinois . . I . . . . . . . . . . . .. . . . . . . . .. . . .. . . . . .. . Now use measurements from perfect to.. drive acoustic . . .. . . . . . . . . . . signals back .into for an intensity peak: . . . .the copper… look . . . . . . . . . . . . . . . . .transducers . . . . . . .. . . .. . . . . . . . . . . . . . . Drive transducer signals back into copper . . .. . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . I . . (grain-free “Cu”) Physics P llinois . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . .. . . . . .. . Now use measurements from perfect to.. drive acoustic . . .. . . . . . . . . . . signals back .into for an intensity peak: . . . .the copper… look . . . . . . . . . . . . . . . . .transducers . . . . . . .. . . .. . . . . . . . . . . . . . . Drive transducer signals back into copper . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . .. . . . . . . . . . . .... . .. . . . . .. . . . . . . . . .. . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . I Physics P llinois . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . one wavelength . .. 650 grains. total; grain . .size is random, . .but typically . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . Acoustic excitation, copper with grains . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . .. . . . . . . . . . . .... . .. . . . . .. . . . . . . . . .. . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . I Physics P llinois . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . one wavelength . .. 650 grains. total; grain . .size is random, . .but typically . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . Acoustic excitation, copper with grains . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . It. still works. transducers have unrealistic properties: model .. . . . BUT these . . . . . . . . . . . . . . . . assumes perfect. knowledge of movement of surface everywhere at . . . . . . . . . . . . transducer face. .Real transducers don’t work this well. . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . .... . .. . . . . .. . . . . . .. . . . . . . . . . .. . . . . . . I . . . Physics P llinois . .. . . . .. . . . . Drive transducer signals back into .grainy copper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . It. still works. transducers have unrealistic properties: model .. . . . BUT these . . . . . . . . . . . . . . . . assumes perfect. knowledge of movement of surface everywhere at . . . . . . . . . . . . transducer face. .Real transducers don’t work this well. . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . .... . .. . . . . .. . . . . . .. . . . . . . . . . .. . . . . . . I . . . Physics P llinois . .. . . . .. . . . . Drive transducer signals back into .grainy copper . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . insensitive real transducers are to shear waves, and only . . . . . . . . . provide sums of amplitudes over entire transducer surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . • Refinement of reconstruction algorithm. So far we find t0 and initial position using something like an autofocus algorithm: use receiver transducers to “drive” signals backwards in time into copper; find time of maximum rms deviation from constant amplitude. a real transducer only reports average amplitude over sensor face: it doesn’t project sound backwards in a realistic manner (it produces a narrow beam) .. .. . . .. . . . . . . . . . . I • Measurements of real NLC structure properties and transition Physics P to RF coupler geometry llinois .... . .. . . . . .. . . . . . 71 . . . . . . . . . . • More. realistic modeling of .transducer performance . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . What we . have been working on . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . •$35k FY05 •$35k FY06 •Support goes for a mix of instrumentation (more electronics, transducers,…) and student salaries . .. . . .. . . . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 72 . . . . . . . . . . . . . . . . . . . .. .. . •$25k FY04 . . . . . . . . . . . . . .. . DOE is funding LCRD 2.15! . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DOE support . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . This particular project is well suited for undergraduate participation. . . . . . . . . . . . . . . . . . . .. . The students are very good! All three undergraduate students will continue working after the summer ends. We are finding it very natural to work in an area that is new to all of us. Summer is our most productive time. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . .. . . . . . . . . . . . . . We are having a lot of. fun .. . . . (and you can too!) . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . .. . . . . . . . . . . . . .. . . . . . . . . . . our other project… .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . Here’s . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . Linac beam: 2820 bunches, 337 nsec spacing (~ 300 kilometers) Damping ring beam: ~20 nsec spacing ~ 17 kilometers Kicker speed determines minimum damping ring circumference. We’re aiming for 6 km circumference. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 74 . . . . . . . . . Fourier engineering: progress on .alternative TESLA . .. . . . . . kickers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . .. . . . .. . . . . . . . .. .. . . . . . . . . . Joe Calvey Michael Davidsaver Justin Phillips George Gollin Mike Haney Jeremy Williams . . . Univ. Illinois .. . . . . . . . . . . . . Shekhar Mishra François Ostiguy Ralph Pasquinelli Phillipe Piot John Reid Vladimir Shiltsev Nikolay Solyak Ding Sun . . . . .. . Tug Arkan Euvgene Borissov Harry Carter Brian Chase David Finley Chris Jensen Timergali Khabiboulline George Krafczyk . . . . Fermilab . . . . . . Physics P llinois . . . . . . Gerry Dugan Joe Rogers . . . . .. . Cornell . . . . . 75 . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . This Linear. . . US university-based . project. is. part of the . . . . . . . . . . .Collider R&D. effort . (LCRD/UCLC) . . . . I . . . .. . . . . . . . . . . . . . . . Participants . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . .. . . . . . . I . . .. . . Fast kicker specs (à la TDR): • B dl = 100 Gauss-meter = 3 MeV/c (= 30 MeV/m 10 cm) • stability/ripple/precision ~.07 Gauss-meter = 0.07% Physics P llinois . . . . . . .. . . . . . . .. . . . .. . . . bunch “collides” . . pulses traveling . TDR design: with electromagnetic . . . . . . . . . . . . . . . in the a series of .traveling wave structures. . . . . opposite direction inside . . . . . . . . Hard. to turn. on/off fast enough. .. 76 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . à la TDR TESLA damping ring kicker . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . damping ring beam . . . Fourier kicker damping ring beam .. . . . . . . . . . . . . George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . . . I kicker field vs. time .. . . . . . . . kicker field vs. time .. . . . .. Kicker is always on. Physics P llinois . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. kicker . Fields when kicker is empty of beam are irrelevant. Synthesize kicker impulse from Fourier components of something with good peaks and periodic zeroes. . . . . . conventional . . . . . .. . . . . . Kicker . . field needs to be . zero. when unkicked . . bunches pass through.. . . .. . .. . . . . . . . . . . . . . . . . . . . . . . 77 . . . . . . . Since it’s hard to turn on/off, why not leave . .. . . . . . it ON all the time? . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . Three. functions with good peaks and . zeroes: #1 .. . . . . . . . . . . . .. . . . . . . .. . . . . 1.. part of the .series . . . for a periodic . d function (. is linac . frequency): . . . . . . . . . . . . . Fourier amplitudes . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . a. k k=N k N=16 A problem: field has non-zero time derivative at the zeroes. Bunch head and tail experience different (non-zero) fields. . . .. . . . . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . .. . I Physics P llinois .... . .. . . . . .. . . . . . . . “Features” (peaks and zeroes) are evenly spaced. 78 . . . . . . .. . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . Three. functions with good peaks and . zeroes: #2 .. . . . .. . . . . . . .. . . . . . . . ak . . . . . . . . . . Fourier amplitudes .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.. “square” of. last zero slope… . . . page: this way . zeroes also have . . . k=N k Better… but frequencies range from 3 MHz to 180 MHz. kicker fields 1 kicker fields 0.04 0.8 0.03 A 3 MHz RF device is very different from a 180 MHz device. 0.6 0.02 0.4 0.01 40 0.2 80 100 120 140 160 .... . .. . . . . .. . . . . . . 100 150 George Gollin, University Based Linear Collider R&D, March, 2005 . . . 50 .. . . . . -50 .. . -100 .. -150 . . . I Physics P llinois 60 79 . . . . . . . .. . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . Three. functions with good peaks and . zeroes: #3 .. . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . bandwidth is reduced. 3.. high-frequency modulate: this way fractional . . . . . . . . . . . bb bbbbbbbbbbbb . .. . Fourier amplitudes . . . . . k=N k . 2N kicker This is what we’re actually studying now, but with N = 60 and = 10: ~1.8 GHz ± 10% bandwidth -50 50 100 150 .... . .. . . . . .. . . . . . . . . .. . . -0.5 . . -100 .. . -150 . I Physics P llinois 0.5 . (Graph uses N = 16, = 4.) fields 1 .. . ak . . . . . . . . . . . . . . . . . . . . . . . . 80 . . . . . . . .. . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . injection/extraction . . . . . . . . . . . . . . . . . . damping . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . . the We. don’t want . . . . . beam to go through . . . . the kicker until we’re . ready to extract. . . . . . . . . . . . . Fourier series kicker would be located in a bypass section. kick While damping, beam follows the upper path. During injection/extraction, deflectors route beam through bypass section. Bunches are kicked onto/off orbit by kicker. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 81 . . . . . . . . .. . . . . . Damping ring .operation with an FS kicker . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . ... . . . . . . . . . . . . . fhigh + (N-1)3 MHz .. . . . . . . Original idea: kicker would be a series of 60 “rf cavities,” each oscillating at one of the desired Fourier components. (60 cavities would allow the damping ring to fit into the Tevatron tunnel.) A bunch “sums” the impulses as it travels through the system. There are lots of cavities, but they’re all nearly the same. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 82 . . . . . extraction path . fhigh + 6 MHz . . .. . . . . . . fhigh + 3 MHz . . . fhigh . . . . . . . . . . . . . . . kicker rf cavities . . . . . . . . . . . . . . . . . . . .. . injection path .. . . . . . . . . . . .. . . . .. . . . . . . . . . . So what is it, actually? . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . Summing signals in a. single cavity… . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . .. . . . . . . . . . . Well yes, maybe… . . . . . . . . . . . . . • dumb: build a 3MHz cavity and drive it so that multiple modes are populated. (cavity is huge, lots of modes to control…) .. .. . . .. . . . . . . . .... . .. . . . . .. . . . . . . . Physics P llinois . I • promising: launch different frequencies down a long (dispersive) waveguide to a low-Q cavity. Send the frequency with slowest group velocity first, fastest last. Signals arrive at cavity properly phased to make a short pulse. Q ~ 25 cavity can support an acceptable range of frequencies. (This was originally Joe Rogers’ idea.) 83 . . . . . . . . . . . . . Is there another way to sum the Fourier . .. . . . . . components? . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. Combine this. with a pulse compression system to drive a small number . . . of low-Q cavities. . . . Illinois, Fermilab, Cornell are involved. . .. . . .. . . . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 84 . . . . of its . .. . . . Instead of a. pulsed kicker, construct a kicking pulse... from a sum . . . . . . . . . . . . . . Fourier components. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . Fourier series pulse compression kicker . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . of . . Unlike Fourier series kicker, in . which bunches. the. effects . . . . . . . . . . sum. different frequencies, this design uses the to form the . cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . System is linear, so low-power tests can be used to evaluate concept. (Fermilab is interested in pursuing this.) Programmable function generator can be reprogrammed to compensate for drifts and amplifier aging. Underway: studies of how sensitive kicker is to parameter errors, noise, and nonlinearities. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 85 . . . . . . . “sum” . . . . . . . . . . . .. . . . . .. . . . . . . . .. . . . .. . . . . . . . Pulse compression kicker . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . Into wave guide last . 8 7 1 10 9 2 1.3 10 2 9 3 10 3 9 4 10 4 9 5 10 9 5 GHz .... . .. . . . . .. . . . . . . .. . . .. . . . . .. George Gollin, University Based Linear Collider R&D, March, 2005 . . . . . 86 . . . . . . . . vs . frequency . 8 . . . . . 0 I . . .. 8 0 Physics P llinois . 10 . . . 5 . .. 10 . . 1 .. . . . 10 . 1.5 . . . . 0.5 c Into . guide first . 10 . wave . 2 8 . . 10 velocity . . . 2.5 . group . . . . . . . . . . .. . . . . . c . . . . guide. . . .. . . . . . . . . . . . . . .. . . . . . . . . . 1.3 GHz cutoff frequency wave. . . . . . . . . . Group velocity vs. frequency . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. kicker . . . . . . .. . . . cavity . . . . . . . . . . . . kicker . . . (dispersive) wave guide . . . . . . . . . . . . . . . . . . . . . . . . . function. . RF . generator. amplifier . . . . . .. . . . Cavity center. frequency is 600 times. linac frequency, 10 times damping ring frequency. . . . . . . . . . .. . Kicker cavity . field for. . . . . ~6. ns. bunch spacing. . . . .. . . . . . . .. . . fields 0.75 Field inside cavity 0.5 kicker fields , 10 ns 1 0.25 0.5 -1.5 10 -7 -1 10 -7 -5 10 -8 5 10 -8 1 10 -7 1.5 10 -7 -0.25 -1 10 -8 -5 10 -9 5 10 -9 1 10 -8 -0.5 -0.5 .... . .. . . . . .. . . . . . . . .. . . . . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . .. -1 . . -0.75 . I Physics P llinois ±10 ns 87 . . . . . Trace the signal from kicker back to amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . end of waveguide fields including . . . . . .. . . . . . . . . . . . . .. downstream cavity . . . . . . . kicker . . . . . . . . . . . (dispersive) wave guide . . . . . . . . . . . . . . . . . . . .. . downstream . . . . . Waveguide peak field . is about 1/10 that inside the cavity. Note phase shift relative to cavity field. . function. . RF . generator. amplifier . . . . . . . . .. . . Wave guide. field at . . . . cavity entrance. . . . . . .. . . . . . . .. . . cavity response 0.1 end of waveguide fields including cavity response 0.05 Wave guide field at cavity entrance 0.1 0.05 -1.5 -1 10 -8 -5 10 -9 10 -7 -1 5 10 10 -7 -9 -5 1 10 10 -8 5 10 -8 1 10 -7 1.5 10 -7 -8 -0.05 -0.05 . .. . . .. . . . . .. . . George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . . . ±10 ns . I Physics P llinois -0.1 88 . . . . . Field at the downstream end of the wave guide . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . fields . . . . . . fields including . . . . . . . .. . . . . Wave guide field at z = 45 meters cavity . . . . . . . end of waveguide . . kicker . . . . . downstream . . . . . 10 % from end of waveguide . . . (dispersive) wave guide . . .. . 10 % from downstream . . . . Note incomplete pulse compression at this point. . . . . . . . . . . . . . . . . . . function. . RF . generator. amplifier . . . . . .. . . . . . .. . . . Wave guide. field . . . . 90% down the length . . of the. wave guide.. . . . . .. . . . . . . .. . . including cavity response 0.06 0.04 cavity response 0.06 0.02 0.04 0.02 -1.5 1 10 -8 2 10 -8 10 -7 3 10 -8 -1 4 10 10 -7 -8 -5 5 10 10 -8 5 10 -8 1 10 -7 1.5 10 -7 -8 -0.02 -0.02 -0.04 -0.04 0 - 50 ns .... . .. . . . . .. . . . . . . . .. . . . . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . .. -0.06 . . . I Physics P llinois -0.06 89 . . . Field 4/5 of the way down the. wave guide . . . . . . . . . . . . . . . . . (dispersive) wave guide . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 50 % from downstream end of waveguide fields . . . .. . . . . . . .. . cavity . . . . . . . kicker . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. function. . RF . generator. amplifier . . . . . . . . Wave guide field . . . . . 50% .down the length . . of the wave guide. . . . . . . . . .. . . . including cavity response Wave guide field at z = 25 meters 0.02 0.01 5 10 -8 1 10 -7 1.5 10 -7 2 10 -7 2.5 10 -7 3 10 -7 -0.01 . .. . . .. . . . . .. . . George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . . . . I Physics P llinois -0.02 90 . . . . . . . . . . . . Field half-way down the wave guide . . . . . .. . . . . . . . . . . . . . . . . . . . upstream end of waveguide fields including cavity . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . cavity . . . . . . . . kicker . . . . . response 0.015 0.01 .. . . . . . . 0.005 Pulse compression, plus energy storage in the cavity! 1.5 10 -7 2 10 -7 2.5 10 -7 3 10 -7 3.5 10 -7 4 10 -7 -0.005 -0.01 . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . -0.015 . I Physics P llinois .... . .. . . . . .. . . . . . 91 . . . . . . . (dispersive) wave guide . . . . . . . . . . . . . . . . .. Note that peak field is about .018 here, in comparison with 1.0 inside cavity. . . Field at upstream end . of the wave guide. . . . . . . . . . function. . RF . generator. amplifier . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . Field at entrance to the wave guide . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . Initial studies: MeV e.-) .for . . Fermilab A0. photoinjector .beam (16 . . use . . . . . . . . . studies: . . . . . . . . . . . . . . . . 1. concept and design studies of FSPC kicker . . . . . . . . .. . . . . . 2. build a fast, simple strip line kicker 3. use the stripline kicker to study the timing/stability properties of the A0 beam 4. build a single-module pulse compression kicker 5. study its behavior at A0 6. perform more detailed studies in a higher energy, low emittance beam (ATF??) . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 92 . . . . . . . . . . .. . . . . . . . .. . . . . .. . . . . .. . . . . . .. . . . . . . Fermilab/Illinois activities . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . .. . . . .. . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . I Physics P llinois . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . .. . . . . . . . . . . . . .. . . . . . .. . . . . .. 93 . . Right now: simulations and RF. engineering discussions… . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . 94 . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . .. . . Physics P llinois . . . . . . . . . . . . .. . . . . . . . . . I . . . . . . . …and writing it. up so it is. clearly described… . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . Modeling strategy is to study the consequences of: • drifts in parameter values (e.g. Q of RF cavity) • noise in RF power amplifier output signal • nonlinearities: harmonic and intermodulation distortion . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 95 . . . . . . . . . . • Waveguide • RF amplifier • Arbitrary function generator . . . .. . . . . . . . upstream: Functional units to . . .in the system, .downstream . . . . . . . . . . . • RF cavity, Q. = 25 . . . . . . . .. . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . Performance modeling studies . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . A(0) (100 ± .07) Gauss-meters Desired off field integral A(t) (0 ± .07) Gauss-meters fDR / fL N 60 fRF / fDR N 10.25 dB or tB ±6 mm ~ ±20 ps ☺ Impeccable Karma . Physics P llinois Nothing has been optimized yet! . . . Bunch length 615 George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . .. . . . . Desired on field integral . . . . . . . . 1300 MHz .. . .. . . .. fcutoff .. . Waveguide cutoff frequency . . . . . . 25 . . . . Q fRF / fL . . . . . MHz . . . . . 1845 . . . . . . 180 MHz . . . . .3 MHz. . 96 . . . . . . . Value . . . .. . . . RF structure Q . . RF structure center frequency . . . . . . . Symbol . . . fL . (L ≡. 2p fL) . fDR (.DR ≡ 2p fDR) .. fRF (RF ≡ 2p fRF) . . . . . Damping ring bunch . . . . frequency . . . .. frequency . . . . . . . . . .. . . I . . . bunch . . . . . . . . Main linac . . Parameters in our studies . . Parameter. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . • Q = 25 • center frequency 1845 MHz . .. . . .. . . . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 97 . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . RF cavity . . . . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . •80. meters long . . . •1300 MHz. cutoff Physics P llinois .. . . .. . . . . . 98 . . . . . . . . I . Waveguide: 80 meters long for the . time being .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . Maximum amplitudes: •entering ~0.016 .... . .. . . . . .. . . . . . . . . . .. . . .. . . . .. . I Physics P llinois ~0.1 . . •exiting 99 . . . . . . .. . . . . . . . . . . . . . . . Pulse compression! . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . .. . . . .. . . . . . . . . . . Waveguide compresses pulse . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . .... . .. . . . . .. . . . . . .. . . . . . . Effects of an amplifier gain error that grows linearly with frequency. The curves represent the difference between delivered and ideal impulses as functions of time. The time region in the plot is centered on the arrival time of the kicked bunch. . . . . . . . . .. . . . . . . . . . . 100 . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. .. . . . . . . .. . . . . . . . . . . For now, look at a . linearly increasing error as a function of frequency… Physics P llinois . . . . . I Amplifier gain error. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . .. . . . . . . . .. . . . . . . . . .. . . . . . .. . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . . . . . I Physics P llinois . . . . . . . . . . . . . . . . . . . . . . 101 . . . . . . Model as flat from. 300 to 6 GHz is . . for now. Cavity . . . . . in frequency, . . . . . . -4 GHz.-1/2 . . . . insensitive to . frequencies far from center frequency… 10 . . . . . . . . . . . . . . . . . . . . . . MHz . . . . . . . .. . . . . . . . .. Amplifier noise… . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . . . . . . . .. . . .. . . . . George Gollin, University Based Linear Collider R&D, March, 2005 .. .. . . . . . . . . .. . . . . . . . . . . . . . 102 . . . . . . . . . . . . . . . . . . . .. . . . . . . . I Physics P llinois . . . .. . . . . random phases. . . .. . . . . . .. . . . . . . . . . . . . . . . . . . .. . . Generate in. 300 kHz . frequency bins, . .. . . . . . . . . More. work is needed… . . . . . . . .. …amplifier noise . . . . . . . . . . . . . . . . . .. . . . . . . . . f f f .. . . . . . . . . . . . George Gollin, University Based Linear Collider R&D, March, 2005 .... . .. . . . . .. . . . . . .. . . . . . f .. . . . . . . . . . .. . . . . . . Physics P llinois . . . . . . . . . . . . . .. . . . . . . . . are. done. Now working . Initial. .harmonic .distortion studies on . . . . . . . . . . intermodulation distortion . simulation. .. . . . . . . . .. . . . . . . . . . . . 103 . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . I . . Nonlinear effects: harmonic and intermodulation . .. . . . . . distortion . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . .. . . . . . are calculable Start with. a. simple kicker whose properties and can . . . . . be. . . . . . . . . . . . its effects . . measured independently of on the A0 electron beam. . . . . . . . . . . . . . . . . . . . . . . . amplitude and Most important: how. well can we measure a device’s timing stability with the A0 beam? . .. . . .. . . . . . . . . . . . . . flanges beam pipe BPM conducting rods . . . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . .. . Fermilab just finished building this. We’ll install it in a few weeks. .. stainless steel pipe BPM . BPM . . BPM beam pipe 104 . . . . . . . Building a stripline . kicker to . understand the A0 beam . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. .. . . . . . . . . . . . . . .. . . . . . . . . . . 105 . . . . . . . .. . . . . . . . . . . . . I Physics P llinois . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . Measuring electrode positions . . . . .. . . . . . . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . .. . . .. . . . .. . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . 106 . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . I Physics P llinois . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . Building a stripline kicker . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . .. . . . .. . . . . .. . . . . . . .. . . . . . . . . . . . 107 . . . . . . . . . .. . . . . . . . . . . . . I Physics P llinois . . .. . . . . . . . . . .. . . . . . . . . it. . Chris Jensen and colleagues just. finished . . . . . . . . . . HV pulser: ±750 V. . . . . . . . . . . .. . . . .. . . . . . . . chopper. . . .. . . . . . . . a Fermilab linac . Start with . . . . . . . .. . . . . . . . . HV pulsers . .. . . . . . . . . . . . . . . . . . . .. . . . . .. . . .. . . . . . . . . . . . . . . .. . . . . .. . . . . . . . .. . . . . . . . . . .... . .. . . . . .. . . . . . . . . . . . . 108 . . . . . . . . . . . Physics P llinois . . . . . . Gerry Dugan is ordering a FID pulser: . . . . . . . . . . . . . ±1. kV . • Maximum output into 50 Ohm: . . . . . . . . . • Amplitude .stability in burst mode 0.3 –. 0.5% . • Pre- and after-pulses 0.3 – 0.5% • Rise time 10-90% of amplitude 0.6 – 0.7 ns • Pulse duration at 90% of Umax 2 – 2.5 ns • Fall time 90-10% of amplitude 1 – 1.5 ns • Maximum PRF in burst mode 3 MHz • Maximum PRF in continuous mode 15 kHz • Timing jitter, both output pulses vs. trigger 20 ps, max • Power 110/220VAC, 50/60 Hz . . . .. . . I . . . . . . .. . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . FID pulser . .. . . . . . . . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . .. . . .. . . . .. . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . 109 . . . . . . . .. . . . . . . . . . . .. . . . . . . . . I Physics P llinois . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . .. . . . .. . . . . . . . . . UIUC students in A0. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . last spring. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. EOI submitted to A0 . . group . . . .. . . . . . . . . . . . . . . . . . . . . . . . Space in beamline will be available ~April 2005 . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 110 . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . 16 MeV electron beam, good spot size,. emittance. . . . . . . Test it in the FNAL A0 photoinjector beam . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . data . Our. plan is to generate simple Monte Carlo to test tools . . . . .. . before we have real data. . . . . . . . . . . . . . . . . . . . We bought a new computer: . .. . . .. . . . . .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 111 . . . . . . . .. . . . . . . . . . . . . tools. . . . . .. . . . . . . . . . . . analysis . . . . . . . .. . . . . . …but we’ve on. . . . started .working . . . . .. . . . . . . . . . . . . . .. No data yet… . . . . . . . . . . . . . . . . . . . . . . . . . .... . .. . . . . .. . . . . . . . . . .. . . .. . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . I Physics P llinois . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . .. . . . .. . . . . . . .. . 112 . . . We started looking at (old) straight-through A0 data . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . involved . . . Fermilab RF group is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIUC HEP electronics design group’s chief is too. So we’re making progress. Goals: • install strip line kicker in A0 during April, 2005 • understand A0 by summer, 2005 • investigate small pulse compression system during summer, 2005 . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 113 . . . . . . . . .. . . . . . . Design, then build one module components. . . .using existing . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . UIUC/FNAL, longer term plans . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . Funding is uncertain, but not nearly as bleak as one might think. The technical challenges are interesting, engaging, daunting. . . . . .. . . .. . George Gollin, University Based Linear Collider R&D, March, 2005 .. . . . . . I Physics P llinois .... . .. . . . . .. . . . . . 114 . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . There is a lot going on.. . . . . . .. . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. Conclusions . . . . . . . . . . .