Chapter 4: Feedback Control System Characteristics Objectives In this chapter we extend the ideas of modeling to include control system characteristics, such as.
Download ReportTranscript Chapter 4: Feedback Control System Characteristics Objectives In this chapter we extend the ideas of modeling to include control system characteristics, such as.
Chapter 4: Feedback Control System Characteristics Objectives In this chapter we extend the ideas of modeling to include control system characteristics, such as sensitivity to model uncertainties, steady-state errors, transient response characteristics to input test signals, and disturbance rejection. We investigate the important role of the system error signal which we generally try to minimize. We will also develop the concept of the sensitivity of a system to a parameter change, since it is desirable to minimize the effects of unwanted parameter variation. We then describe the transient performance of a feedback system and show how this performance can be readily improved. We will also investigate a design that reduces the impact of disturbance signals. Illustrations Open-And Closed-Loop Control Systems An open-loop (direct) system operates without feedback and directly generates the output in response to an input signal. A closed-loop system uses a measurement of the output signal and a comparison with the desired output to generate an error signal that is applied to the actuator. Illustrations Open-And Closed-Loop Control Systems H( s ) Y( s ) E( s ) 1 G( s ) R( s ) 1 G( s ) 1 1 G( s ) R( s ) Error Signal Thus, to reduce the error, the magnitu de of 1 G( s ) 1 H( s ) 1 Y( s ) E( s ) G( s ) 1 H( s ) G( s ) R( s ) 1 1 H[ ( s ) G( s ) ] R( s ) Thus, to reduce the error, the magnitu de of Illustrations 1 G( s ) H( s ) 1 Sensitivity of Control Systems To Parameter Variations For the closed-loop case if Y( s ) 1 H( s ) R( s ) GH( s ) > 1 Output affected only by H(s) G( s ) DG( s ) DY( s ) Open Loop DG( s ) R( s ) Closed Loop Y( s ) DY( s ) DY( s ) (G( s ) DG( s ) ) R( s ) ( ) D 1 G( s ) G( s ) H( s ) DG( s ) (1 GH( s ) DGH( s ) )( 1 GH(s )) R( s ) GH( s ) > DGH( s ) DY( s ) DG( s ) ( 1 GH( s ) ) Illustrations 2 R( s ) The change in the output of the closed system is reduced by a factor of 1+GH(s) Sensitivity of Control Systems To Parameter Variations Y (s ) R (s ) T (s ) d D T ( s) d T ( s) S S D G ( s) G ( s) T (s ) S G S G S H Illustrations d T d T d G d G 1 T (1 T d T d T d G d G T d G d G G G T 1 H [(s )G (s )] 1 T T T G T d T d T d G d G G T 1 (1 GH ) 2 G G ( 1 GH ) Sensitivity of the closed-loop to G variations reduced GH - GH ( 1 GH ) ) Sensitivity of the closed-loop to H variations When GH is large sensitivity approaches 1 Changes in H directly affects the output response Example 4.1 Open loop -Ka v i n vo T -ka T SK a C los ed loop T 1 R2 Rp R1 -Ka 1 Ka R1 R2 T SK a 1 1 Ka I f Ka is large, the sens it iv ity is low. 4 Ka 1 0 Illustrations 0 .1 T SK a -4 1 3 1 10 9 .99 1 0 Control of the Transient Response of Control Systems ( s ) G( s ) Va( s ) K1 1 s 1 where, K1 Illustrations Km Ra b Kb Km 1 Ra J Ra b Kb Km Control of the Transient Response of Control Systems Illustrations ( s ) K a G( s ) K a K 1 R( s ) 1 K a K t G( s ) 1 s 1 K a K t K 1 K a s K1 1 ( 1 K a K t K 1) 1 Control of the Transient Response of Control Systems Illustrations Disturbance Signals In a Feedback Control Systems R(s) Illustrations Disturbance Signals In a Feedback Control Systems Illustrations Disturbance Signals In a Feedback Control Systems Km G 1( s ) K a E( s ) -( s ) G 2( s ) Ra 1 ( J s b ) G( s ) 1 G 1( s ) G 2( s ) H( s ) H( s ) Kt Kb Ka Td ( s ) G 1G 2H (s ) > 1 E( s ) 1 G 1( s ) H( s ) G 1( s ) H( s ) Td ( s ) K a K m Ra Kt If G1(s)H (s ) v ery large the ef f ect of the disturbanc e c an be minimized Kb Ka approxim ately Striv e to maintain Ka large and Ra < 2 ohms Illustrations K a K m K t Ra s inc e Ka >> Kb Steady-State Error Eo ( s ) Ec( s ) R ( s ) - Y( s ) 1 1 G( s ) ( 1 - G( s ) ) R( s ) R( s ) H( s ) 1 St eady Stat e Error l im e( t ) t 0 l im s E( s ) s 0 For a st ep unit input eo ( i nfi ni te) ec( i nfi ni te) Illustrations l im s ( 1 - G( s ) ) s 0 l im s s 0 1 s 1 1 G( s ) s 1 l im ( 1 - G( 0) ) s 0 l im s 1 0 1 G( 0) The Cost of Feedback Increased Number of components and Complexity Loss of Gain Instability Illustrations Design Example: English Channel Boring Machines Y( s ) Y( s ) T( s ) R( s ) Td ( s ) D( s ) K 1 1 s 2 s 1 2 s K Illustrations R( s ) 1 2 s 1 2 s K D( s ) Design Example: English Channel Boring Machines Study system for different Values of gain K St eady st ate error f or R (s )=1/s and D (s)=0 l im e( t ) t infinite l im s 1 1 K 1 1 s s 2 s s s 0 1 0 G St eady st ate error f or R (s )=0 D (s )=1/ s l im t infinite Illustrations y ( t) l im s s 0 1 2 s s 1 2 s K 1 Td 1 K Study Examples of 4.9 - Control Systems Using MATLAB And Apply concepts performing Lab 3 Illustrations