arXiv: 1304.0079 Jet/C-Polarimeters Electron-Lenses RHIC CeC-TF Beams: √s 200 - 500 GeV pp; 50-60% polarization RF Lumi: ~10 pb-1/week PHENIX Detector PHENIX PC3 PC2 PbSc PC3 TEC Central Magnet PbSc PbSc PbSc BBC NSRL EBIS BB Booster RICH MPC (F)VTX PC1 PbSc RICH PbGl AGS PC1 7.9 m = 26 ft TOF-W LINAC PbSc DC DC STAR STAR ERL.
Download ReportTranscript arXiv: 1304.0079 Jet/C-Polarimeters Electron-Lenses RHIC CeC-TF Beams: √s 200 - 500 GeV pp; 50-60% polarization RF Lumi: ~10 pb-1/week PHENIX Detector PHENIX PC3 PC2 PbSc PC3 TEC Central Magnet PbSc PbSc PbSc BBC NSRL EBIS BB Booster RICH MPC (F)VTX PC1 PbSc RICH PbGl AGS PC1 7.9 m = 26 ft TOF-W LINAC PbSc DC DC STAR STAR ERL.
arXiv: 1304.0079 Jet/C-Polarimeters Electron-Lenses RHIC 2012 CeC-TF Beams: √s 200 - 500 GeV pp; 50-60% polarization RF Lumi: ~10 pb-1/week PHENIX Detector PHENIX PC3 PC2 PbSc PC3 TEC Central Magnet PbSc PbSc PbSc BBC NSRL EBIS BB Booster RICH MPC (F)VTX PC1 PbSc RICH PbGl AGS PC1 7.9 m = 26 ft TOF-W LINAC PbSc DC DC STAR STAR ERL Test Facility PbGl Aerogel TOF-E Beam View West RPC3 So u MuID 2 10.9 m = 36 ft ZDC South th M uo nM East Central Magnet rth No ag ne t M uo ag nM t ne RPC3 Tandems MPC BBC ZDC North MuID (F)VTX MuTr South RPC1 Side View 18.5 m = 60 ft North JLAB UGM, Newport News May 2013 E.C. Aschenauer >= Lavg: +15% Pavg: +8% 2013 P~55% 2012: golden year for polarized proton operation 100 GeV: new records for Lpeak, Lavg, P 255 GeV: new records for Lpeak, Lavg, P highest E for pol. p beam What will come: increased Luminosity and polarization through • OPPIS new polarized source • Electron lenses to compensate beam-beam effects • many smaller incremental improvements will make luminosity hungry processes, i.e. DY, easier accessible 3 JLAB UGM, Newport News May 2013 E.C. Aschenauer Is the proton looking like this? DG SqDq dq f1T S Lg SqLq qLq SqDq DG f1T dq Lg “Helicity sum rule” gluon spin 1 = P, 1 | J z | P, 1 = 1S z +S z + Lz + Lz q g å q g 2 2 QCD 2 å q 2 q total u+d+s quark spin 4 Where do we stand solving the “spin puzzle” ? angular momentum JLAB UGM, Newport News May 2013 E.C. Aschenauer P1 q(x1) x1P1 Hard Scattering Process sˆ P2 x2P2 X g(x2) “Hard” (high-energy) probes have predictable rates given: Partonic hard scattering rates (calculable in pQCD) Parton distribution functions (need experimental input) Fragmentation functions (need experimental input) DIS, pp 5 pQCD JLAB UGM, Newport News May 2013 Universal nonperturbative functions e+eE.C. Aschenauer contributing sub-processes: low pT low x scale uncertainty high √s low x forward rapidity low x changing vs pT and rapidity 2-2.5 GeV/c 4-5 GeV/c 9-12 GeV/c =3.3, s=200 GeV 6 2-2.5 GeV/c 4-5 GeV/c 9-12 GeV/c JLAB UGM, Newport News May 2013 E.C. Aschenauer s=62 GeV (PRD79, 012003) s=200 GeV (PRD76, 051106) s=500 GeV (Preliminary) PRL 97, 152302 Data compared to NLO pQCD calculations: s=62 GeV calculations may need inclusion of NLL (effects of threshold logarithms) s=200 and 500 GeV: NLO agrees with data within ~30% Input to qcd fits of gluon fragmentation functions DSS √s=200 GeV Jet Cross Sections agree with data in ~20% 7 JLAB UGM, Newport News May 2013 E.C. Aschenauer 1 = P, 1 | J z | P, 1 = 1S z +S z + Lz + Lz q g å q g 2 2 QCD 2 å q 2 q Can DS and DG explain it all ? 8 JLAB UGM, Newport News May 2013 E.C. Aschenauer theory predictions before RHIC T h e o r e t i c a l 9 JLAB UGM, Newport News May 2013 E.C. Aschenauer xDg RHIC DIS 200 GeV xDg 0.2 Scaling violations of g1 0.1 (Q2-dependence) give indirect access to the gluon distribution via DGLAP RHIC polarized pp collisions at midrapidity direct access to gluons (gg,qg) evolution. 0 Rules out large DG for 0.05 < x < 0.2 GRSV std 2 Q = 10 GeV -0.1 DSSV 10 -3 10 -2 2 DIS + RHIC £ run 6 10 -1 x 1 Integral in RHIC x-range: 10 JLAB UGM, Newport News May 2013 E.C. Aschenauer truncated moment (“RHIC pp region”) DSSV: Phys.Rev.D80:034030,2009 DSSV+: DSSV+new DIS/SIDIS data truncated moment (“high x”) bottom line: RHIC pp data clearly needed (current DIS+SIDIS data alone do not constrain Δg) new (SI)DIS data do not change much for Δg trend for positive Δg at large x (as before) 11 JLAB UGM, Newport News May 2013 E.C. Aschenauer DSSV: arXiv:0904.3821 DSSV+: DSSV+COMPASS DSSV++: DSSV+ & RHIC 2009 15 2 Q = 10 GeV 2 DSSV++ Dc2 QCD fit strong constrain on first completely consistent with DSSV+ in D𝛘2/𝛘2=2% 10 Dc = 2% in DSSV analysis 2 5 DSSV DSSV+ p0 p (GeV/c) 0 T -0.1 0 0.2 ò 0.1 0.2 0 Dg(x,Q ) dx 5 10 15 2 PHENIX Prelim. p 0 , Run 2005-2009 0.05 PHENIX shift uncertainty 0.04 DSSV++ for p 0 STAR Prelim. jet, Run 2009 STAR shift uncertainty A LL PHENIX & STAR fully consistent DSSV++ for jet 0.02 0 PHENIX / STAR scale uncertainty 6.7% / 8.8% from pol. not shown 12 JLAB UGM, Newport News May 2013 0 10 20 30 Jet p (GeV/c) E.C. Aschenauer T DSSV: arXiv:0904.3821 DSSV+: DSSV+COMPASS DSSV++: DSSV+ & RHIC 2009 15 2 Q = 10 GeV 2 DSSV DSSV++ Dc2 10 xDg Dc = 2% in DSSV analysis 2 0.2 5 Q2 = 10 GeV 2 DSSV RHIC 200 GeV 0.1 DSSV+ 0 -0.1 0 0.2 ò 0.1 Do things add up? 0.2 Dg(x,Q ) dx 2 0 0.05 DSSV -0.1 First time a significant non-zero Dg(x) DSSV++ 10 -2 10 -1 x 1 1 in units of h DSSV+ Spin of the proton ò Dg(x,Q2) dx xmin 0.8 2 Q = 10 GeV 2 forward RHIC 500 GeV 0.6 0.4 DIS RHIC 200 GeV DSSV++ 0.2 0 13 JLAB UGM, Newport News May 2013 10 -3 -2 -1 10 xmin E.C. Aschenauer 10 Reduce uncertainties and go to low x measure correlations (di-jets, di-hadrons) constrain shape of Dg(x) ALL p0 and jet at √s = 500 GeV xmin > 0.01 Experimentally Challenging measure ALL at forward rapidities xmin > 0.001 ALL ≲ 0.001 high Lumi good control of systematics x_T 0.2 0.15 0.1 A0.05 LL pp ® p0X -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 0 Runs 9+14 Proj (200) Run 12 Proj (500) GRSV-Std (500) DSSV (500) GRSV-Std (200) DSSV (200) Inclusive Jet A_LL for |eta|<1 0.25 0.3 0.35 Run 2009 - 2015: 0.001 -max DSSV 3.1<|h|<3.9 Many more probes: A_LL 0 -0.001 PHENIX proj. for s=510 GeV: -1 L=630 pb P=0.55 2 14 4 p± sign of Dg(x) direct photon theoretically clean heavy flavour luminosity hungry ….. 6 p (GeV/c) JLAB UGM, Newport News May 2013 T E.C. Aschenauer Impact of inclusive jet data 2009 to 2015 at √s=200 GeV and √s=500 GeV on Dg(x) uncertainties reduce by factor 2 15 15 Dci 2 Dci 2 10 10 Dc2=2% Dc2=2% 5 5 DSSV++ 2013 (500x2) 500 GeV 2013 2015 200 GeV 2015 (200x1.4-2) 2013+2015 0 0 15 0.05 0.1 1, [ 0.05-0.2] Dg 0.15 0.2 DSSV++ 2013 (500x2) 2013 500 GeV 2015 200 GeV 2015 (200x1.4-2) 2013+2015 0 0 0.1 JLAB UGM, Newport News May 2013 Dg 0.2 1, [ 0.01-0.2] 0.3 E.C. Aschenauer novel electroweak 0.05<x<0.4 probe RHIC pp data constraining Δg(x) 0.01 < x <0.2 data plotted at xT=2pT/√s 16 JLAB UGM, Newport News May 2013 E.C. Aschenauer Since W is maximally parity violating W’s couple only to one parton helicity large Δu and Δd result in large asymmetries. Complementary to SIDIS: very high Q2-scale extremely clean theoretically No Fragmentation function backward 17 x1 small t large x1 large u large forward E.C. Aschenauer Run-2009: stot × BR(W ® l n ) (pb) W 104 Theory: FEWZ and MSTW08 NLO PDFs 3 10 pp ® W 102 pp ® W + pp ® W - STAR Phenix ATLAS CMS UA1 UA2 CDF D0 tot sZ/ × BR(Z/ g * ® ll) (pb) g* 10 3 10 102 pp ® Z/ g * 10 pp ® Z/ g * 3 10 s (GeV) PHENIX Run 2009-2012: first result from muon arms 18 JLAB UGM, Newport News May 2013 E.C. Aschenauer DSSV STAR Preliminary Run 2012 AL ± 0.5 w/ proj. W data Dc 2 e± p+p ® W ® e + n e e 25 < ETT < 50 GeV s=510 GeV DSSV++ 15 10 DSSV 2 Dc =2% - W- 5 DSSV++ w/ STAR W data DSSV+ 0 Rel lumi lumi Rel syst syst 0 -0.06 -0.04 -0.02 -0.5 0.02 1 0.04 0.06 ò Du(x,Q2) dx + W 0.05 15 DSSV++ w/ proj. W data Dc 2 DSSV08 DSSV08 DSSV08 DSSV08 -1 0 RHICBOS RHICBOS CHE NLO NLO CHE 10 2 DSSV08 L0 L0 with with D Dcc2=1 =1 pdf pdf error error DSSV08 2 DSSV 2 Dc =2% 3.4% beam beam pol pol scale scale uncertainty uncertainty not not shown shown 3.4% Remaining syst syst <10% <10% of of stat stat errors errors Remaining -2 -1 0 DSSV+: DSSV+COMPASS DSSV++: DSSV+ & STAR-W 2009 DSSV++: DSSV+ & RHIC-W proj. 19 1 lepton 2 h 5 DSSV+ DSSV++ w/ STAR W data 2 Q = 10 GeV 2 0 -0.08 JLAB UGM, Newport News May 2013 -0.06 -0.04 -0.02 1 0 0.02 ) dx òDd(x,Q E.C. Aschenauer 0.05 2 AL pseudo-data randomized around DSSV ® p + p ® W ± + X ® e± + X ® p + p ® W ± + X ® m± + X 0.6 0.4 – DSSV++ 15 0.02 2 xDu w/ proj. W data Dc 2 Q = 10 GeV 25 GeV<E eT <50 GeV m 2 10 0 15 GeV<E T DSSV 2 Dc =2% STAR PHENIX -0.02 5 DSSV DSSV+ 0.2 W 0 -0.04 - DSSV+ DSSV++ STAR W data DSSV++ with proj. Ww/data 0 Systematic Uncertainty -0.06-2 -0.04 -0.02 10 W+ -0.2 0 0.02 1 0.04 0.06 -1 10 ò Du(x,Q2) dx x 0.05 15 0.02 2 -0.4 – DSSV++ xDd w/ proj. W data Dc 2 Q = 10 GeV 2 -1 -0.6 L 09-13 = 630 pb , P = 55% W - W+ 10 0 DSSV 2 Dc =2% e, m CHE-DSSV (25 GeV<ET ) e, m CHE-DSSV (15 GeV<E ) -2 -1 h 0 T 1 2 -0.02 5 DSSV+ lepton DSSV+: DSSV+COMPASS DSSV++: DSSV+ & STAR-W 2009 DSSV++: DSSV+ & RHIC-W proj. 20 DSSV++ -0.04 w/ STAR W data 2 Q = 10 GeV 2 0 -0.08 -2 10 JLAB UGM, Newport News May 2013 -0.06 -0.04 -0.02 -11 0 0.02 10 2 òDd(x,Q ) dxx E.C. Aschenauer 0.05 21 JLAB UGM, Newport News May 2013 E.C. Aschenauer Big single spin asymmetries in pp !! Naive pQCD (in a collinear picture) predicts AN ~ asmq/sqrt(s) ~ 0 Left Do they survive at high √s ? YES Is observed pt dependence as expected from p-QCD? NO Right What is the underlying process? Sivers / Twist-3 or Collins or .. till now only hints ANL ZGS s=4.9 GeV BNL AGS s=6.6 GeV FNAL s=19.4 GeV BRAHMS@RHIC s=62.4 GeV Collins Asy Collins Asymmetry A º 2 <sin( f f )> vs. z S 0.1 h p+ Asymmetry S p p Asymmetry - 2 <sin(f S h f )> 0.05 0 systematic uncertainties systematic uncertaintie -0.05 RHIC 2006 Systematic effects contributing to <1% of total uncertainty excluded pp ® jet( p -0.1 0 22 0.1 Thu Oct 18 08:33:04 2012 0.2 JLAB UGM, Newport News May 2013 0.3 0.4 0.5 z 0.6 0.7 0.8 0.9 E.C. Aschenauer 10 -1 Sivers/twist-3 mechanism: asymmetry in jet or γ production SP Collins mechanism: asymmetry in jet fragmentation SP kT,q p p p Sensitive to proton spin – parton transverse motion correlations • Signatures: – AN for jets or direct photons • NOT universal – Sign change from SIDIS to DY 23 p Sq Sensitive to transversity kT,π • Signatures: – Collins effect – Interference fragmentation functions • Believed to be universal JLAB UGM, Newport News May 2013 E.C. Aschenauer Collins / Transversity: conserve universality in hadron hadron interactions FFunf = - FFfav and du ~ -2dd evolve ala DGLAP, but soft because no gluon contribution (i.e. non-singlet) Sivers, Boer Mulders, …. do not conserve universality in hadron hadron interactions kt evolution can be strong o till now predictions did not account for evolution FF should behave as DSS, but with kt dependence unknown till today u and d Sivers fct. opposite sign d >~ u Sivers and twist-3 are correlated o global fits find sign mismatch, possible explanations, 24 like node in kt or x don’t work JLAB UGM, Newport News May 2013 E.C. Aschenauer Transversity x Collins SIVERS Rapidity dependence of AN for p0 and eta with increased pt coverage p+/-p0 azimuthal distribution in jets AN for jets AN for direct photons AN for heavy flavour gluon Interference fragmentation function AN Collins Asymmetry A º 2 <sin( f 0.12 0.1 Expected Asymmetries of Prompt Photons p+ S f )> vs. z h Collins Asymmetry A º 2 <sin(f Asymmetry f )> vs. jT h p data horizontally offset for clarity p- Asymmetry 0.1 S TransversityxInterference FF STAR Preliminary h f )> 0.05 0.06 0.04 S arXiv: 1208.1962 Tq,F pp p0 Tq,F SIDIS new Tq,F SIDIS old 2 <sin(f 0.08 0 systematic uncertainties systematic uncertainties -0.05 RHIC 2006 Systematic effects contributing to <1% of total uncertainty excluded s = 200 GeV ± pp ® jet( p ) ; jet p T>10 GeV 0.02 -0.1 0 0 0.1 Thu Oct 18 08:33:04 2012 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 z 10 -1 j (GeV) 1 10 T -0.02 -0.04 -0.06 -0.08 25 s = 200 GeV, P=60%, Ldt=50 pb -1 0.4 0.5 0.6 0.7 0.8 xF JLAB UGM, Newport News May 2013 E.C. Aschenauer Central Rapidity AN(p0) dominated by gg and qg no hint of a non-zero AN(p0) Forward Rapidity AN(J/) only gg: no hint of a non-zero AN(J/) 26 JLAB UGM, Newport News May 2013 E.C. Aschenauer Intermediate QT Q>>QT/pT>>LQCD Transverse momentum dependent Q>>QT>=LQCD Q>>pT Collinear/ twist-3 Q,QT>>LQCD pT~Q Efremov, Teryaev; Qiu, Sterman Sivers fct. LQCD << QT/PT << Q QT/PT critical test for our understanding of TMD’s and TMD factorization QCD: 27 DIS: attractive FSI SiversDIS = - Drell-Yan: repulsive ISI SiversDY or SiversW or SiversZ0 E.C. Aschenauer Delivered Luminosity: 500pb-1 (~6 weeks for Run14+) STAR AN(W): -1.0 < y < 1.5 W-fully reconstructed - 0.4 s = 510 GeV 0 < q < 3 GeV/c s = 510 GeV 0 < q < 3 GeV/c 0.15 T 0.35 Projection, Ldt=500 pb T -1 Projection, Ldt=500 pb 0.1 STAR 0.3 AN Expected asymmetries for W + -bosons AN AN Expected asymmetries for W -bosons PHENIX AN(DY): 1.2<|y|<2.4 Expected asymmetries in Drell-Yan s = 510 GeV 0 < q < 1 GeV/c T 0.02 4 < mg * < 8 GeV/c -1 STAR arXiv: 0903.3629 0.04 2 0 arXiv: 0903.3629 0.25 0.2 0.05 -0.02 0 -0.04 0.15 -0.06 -0.05 0.1 Projection, Ldt=500 pb -1 -0.08 0.05 -0.1 arXiv: 0912.1319 -0.1 0 -2 -1 0 1 2 y -0.15 -2 -1 0 1 Extremely clean measurement of dAN(Z0)+/-10% for <y> ~0 28 PHENIX W 2 y -4 -2 0 2 4 y W JLAB UGM, Newport News May 2013 g* E.C. Aschenauer Aybat-Prokudin-Rogers, 2011 Sun-Yuan, 2013 Many calculations on energy dependence of DY and now TMDs Collins-Soper Evolution, 1981 Collins-Soper-Sterman, 1985 Boer, 2001 Idilbi-Ji-Ma-Yuan, 2004 Kang-Xiao-Yuan, 2011 Collins 2011 Aybat-Collins-Rogers-Qiu, 2011 Aybat-Prokudin-Rogers,2012 Idilbi, et al., 2012 Boer 2013 Sun, Yuan, arXiv: 1304.5037 Need Measurements: to see how strong evolution effects for TMDs are till now many predictions neglect TMD evolution effects W+ √s=500 GeV DY √s=200 GeV 29 JLAB UGM, Newport News May 2013 E.C. Aschenauer The Beauty of RHIC mix and match beams as one likes polarised p↑A unravel the underlying sub-processes to AN getting the first glimpse of GPD E for gluons AUT(J/ψ) in p↑A 30 JLAB UGM, Newport News May 2013 E.C. Aschenauer the way to 3d imaging of the proton and the orbital angular momentum Lq & Lg Measure them through exclusive reactions golden channel: DVCS e’ e (Q2) g gL* x+ξ x-ξ ~ p ~ H, H, E, E (x,ξ,t) p’ t Spin-Sum-Rule in PRF: from g1 GPDs: Correlated quark momentum and helicity distributions in transverse space 31 responsible for orbital angular momentum E.C. Aschenauer Get quasi-real photon from one proton Ensure dominance of g from one identified proton by selecting very small t1, while t2 of “typical hadronic size” small t1 large impact parameter b (UPC) Final state lepton pair timelike compton scattering timelike Compton scattering: detailed access to GPDs including Eq/g if have transv. target pol. Challenging to suppress all backgrounds Z2 A2 Final state lepton pair not from g* but from J/ψ Done already in AuAu Estimates for J/ψ (hep-ph/0310223) transverse target spin asymmetry calculable with GPDs AUT (t ,t) ~ t0 - t Im(E * H) mp |H| M J2 /Y t= s information on helicity-flip distribution E for gluons golden measurement for eRHIC Gain in statistics doing polarized p↑A 32 JLAB UGM, Newport News May 2013 E.C. Aschenauer at 15-17m at 55-58m • Roman Pot detectors to measure forward scattered protons in diffractive processes • Staged implementation to cover wide kinematic coverage Phase I (Installed): for low-t coverage Phase II (ongoing) : for higher-t coverage 8(12) Roman Pots at ±15 and ±17m No special b* running needed any more 2 t = -2 p (1- cosQ) 250 GeV to 100 GeV scale t-range by 0.16 33 JLAB UGM, Newport News May 2013 E.C. Aschenauer Gluon density dominates at x<0.1 10 6 10 xg 10 xS 5 Q2 = 10HERA GeV2I NC e+p x = 0.00005, i=21 x = 0.00008, i=20 x = 0.00013, i=19 x = 0.00020, i=18 x = 0.00032, i=17 x = 0.0005, i=16 10 -2 large x 10 -3 10-2 xuv JIMWLK BK 10 BFKL xdv x = 0.13, i=4 HERAPDF1.0 x = 0.18, i=3 10-1 x = 0.40, i=1 x 1 x = 0.65, i=0 x=1 -3 exp. uncert. 10 saturation -2 x = 0.25, i=2 parametrization uncert. 10-3 -4 10 DGLAP x = 0.08, i=5 model uncert. 1 as << 1 -1 x = 0.05, i=6 exp. uncert. 10-2 xS g in x = 0.032, i=7 HERAPDF1.0 Q2 = 10 GeV2 al sc x = 0.013, i=9 x = 0.02, i=8 10 2 xg 1 ri c 10-1 10 et m x = 0.005, i=11 x = 0.008, i=10xdv 10 3 -1 2 Qs(x) 10 o ge 10 4 10 H1 and ZEUS Fixed Target HERAPDF1.0 x = 0.0008, i=15 x = 0.0013, i=14 x = 0.0020, i=13 xuv x = 0.0032, i=12 1 10 x=10-5 ln Q2 + H1 and ZEUS xf xf 10 Gluon density dominates at x<0.1 H1 and ZEUS 7 2 sr,NC(x,Q ) x 2 i small x model uncert. parametrization non-perturbative regionuncert. 10-3 -4 10 10 -3 ln x 10 -2 10-1 as ~ 1 x 1 1 10 in gluons 10 10 10 10 Rapid rise described naturally by linear pQCD evolution equations 2 2 Q / GeV This rise cannot increase forever - limits on the cross-section non-linear pQCD evolution equations provide a natural way to tame this growth and lead to a saturation of gluons, characterised by the saturation scale Q2s(x) 34 2 3 4 5 E.C. Aschenauer At y=0, suppression of away-side jet is observed in A+A collisions No suppression in p+p or d+A x~10-2 However, at forward rapidities (y ~ 3.1), an awayside suppression is observed in dAu Away-side peak also much wider in d+Au compared to pp x ~ 10-3 35 E.C. Aschenauer Yuri Kovchegov et al. strong suppression of odderon STSA in nuclei. Very unique RHIC possibility p↑A Synergy between CGC based theory and transverse spin physics AN(direct photon) = 0 The asymmetry is larger for peripheral collisions r=1fm r=1.4fm r=2fm p0 36 Qs=1GeV STAR: projection for upcoming pA run Curves: Feng & Kang arXiv:1106.1375 solid: Qsp = 1 GeV dashed: Qsp = 0.5 GeV JLAB UGM, Newport News May 2013 E.C. Aschenauer Multi Year Run Plan DG SqDq dq f1T S Lg SqLq qLq SqDq DG f1T dq Lg RHIC SPIN Program the unique science program addresses all important open questions in spin physics uniquely tied to a polarized pp-collider never been measured before & never without 37 JLAB UGM, Newport News May 2013 E.C. Aschenauer 38 JLAB UGM, Newport News May 2013 E.C. Aschenauer significant experimental and theoretical progress in past 25+ years, yet many unknows … Δg(x,Q2) can hide one unit of here 0.2 • found to be not big at 0.05 < x < 0.2 • RHIC/EIC can extend x range & reduce uncertainties [500 GeV running & particle correlations] yet, will full 1st moment [proton spin sum] still will remain to have significant uncertainties from unmeasured small x region? GRSV std 0.1 0 -0.1 Δq’s (x,Q2) xDg DSSV 10 -3 10 -2 DIS RHIC2 & 2 Q = 10 GeV pp pp DIS + RHIC £ run 6 10 -1 • known: quarks contribute much less to proton spin than expected from quark models x x 1 large uncertainties in ΔΣ from unmeasured small x 39 • surprisingly small/positive Δs from SIDIS: large SU(3) breaking? _ _ • flavor separation not well known, e.g., Δu Δd JLAB UGM, Newport News May 2013 E.C. Aschenauer PDFs do not resolve transverse momenta or positions in the nucleon fast moving nucleon turns into a `pizza’ but transverse size remains about 1 fm compelling questions how are quarks and gluons spatially distributed how do they move in the transverse plane do they orbit and do we have access to spin-orbit correlations required set of measurements & theoretical concepts 1-D parton densities form factor not related by 2+1-D transv. mom. dep. PDF semi-inclusive DIS Fourier transf. Wigner function 4+1-D 40 impact par. dep. PDF generalized PDF exclusive processes high-level connection measurable ? important in other branches of Physics JLAB UGM, Newport News May 2013 E.C. Aschenauer Detector Layout for forward physics studies Use open sPHENIX central barrel geometry to introduce tracking charged particle identification electromagnetic calorimeter hadron calorimeter muon detection Use existing equipment where possible 41 JLAB UGM, Newport News May 2013 E.C. Aschenauer Forward instrumentation optimized for p+A and transverse spin physics – Charged‐particle tracking – e/h and γ/π0 discrimination – Possibly Baryon/meson separation 42 JLAB UGM, Newport News May 2013 E.C. Aschenauer • how well are we doing ? • refit/new analysis necessary ? • impact on uncertainties ? • DIS: A1p from COMPASS arXiv:1001.4654 • SIDIS: A1,dπ,K from COMPASS arXiv:0905.2828 • SIDIS: A1,pπ,K from COMPASS arXiv:1007.4061 extended x coverage w.r.t. HERMES 43 JLAB UGM, Newport News May 2013 E.C. Aschenauer x-range not covered by HERMES DSSV works well: no surprises at small x 2 numerology: arXiv:0905.2828 DSSV 2008 DSSV+ 44 JLAB UGM, Newport News May 2013 DSSV 08 data sets with 392.5 420.8 A1d,π,K 418.9 E.C. Aschenauer COPING WITH NEW DATA: SIDIS A1P,p,K 1st kaon data on p-target (not available from HERMES) x-range not covered by HERMES 2 numerology: DSSV 08 arXiv:1007.4061 DSSV+ DSSV 08 data sets with 392.5 456.4 A1p&d,π,K 453.0 no refit required (Δχ2=1 does not reflect faithful PDF uncertainties) trend for somewhat less polarization of sea quarks; 45 JLAB UGM, Newport News May 2013 less significant E.C. Aschenauer Δq’s (x,Q2) • known: quarks contribute much less to proton spin than expected from quark models large uncertainties in ΔΣ from unmeasured small x • surprisingly small/positive Δs from SIDIS: large SU(3) breaking? _ _ • flavor separation not well known, e.g., Δu Δd 46 JLAB UGM, Newport News May 2013 E.C. Aschenauer current value for ΔΣ strongly depends on assumptions on low-x behavior of Δs • new COMPASS data support small/positive Δs(x) at x > 0.01 • they also prefer a sign change >0 <0 at around x=0.01 • but large negative 1st moment entirely driven by assumptions on SU(3) • caveat: dependence on FFs COMPASS 0.004 < x < 0.3 47 JLAB UGM, Newport News May 2013 E.C. Aschenauer M. Diehl To improve imaging on gluons add J/ψ observables cross section AUT ….. 48 JLAB UGM, Newport News May 2013 E.C. Aschenauer pp ®Z 0 ®e +e 300 pb-1 -> ~10% on a single bin of AN Generator: PYTHIA 6.8 • Clean experimental momentum reconstruction • Negligible background • electrons rapidity peaks within tracker acceptance (||< 1) • Statistics limited 49 JLAB UGM, Newport News May 2013 E.C. Aschenauer Angle [rad] Momentum smearing mainly due to Fermi motion + Lorentz boost Angle <~3mrad (>99.9%) Study: JH Lee generated Passed DX aperture Accepted in RP The same RP configuration with the current RHIC optics (at z ~ 15m between DX-D0) Acceptance ~ 98% 50 JLAB UGM, Newport News May 2013 E.C. Aschenauer Year s [GeV] Recorded PHENIX 2002 (Run 2) 200 / 0.3 pb-1 15 2003 (Run 3) 200 0.35 pb-1 0.3 pb-1 27 2004 (Run 4) 200 0.12 pb-1 0.4 pb-1 40 2005 (Run 5) 200 3.4 pb-1 3.1 pb-1 49 2006 (Run 6) 200 7.5 pb-1 6.8 pb-1 57 2006 (Run 6) 62.4 0.08 pb-1 2009 (Run9) 500 10 pb-1 10 pb-1 39 2009 (Run9) 200 14 pb-1 25 pb-1 55 2011 (Run11) 500 27.5 / 9.5pb-1 12 pb-1 48 2012 (Run12) 500 30 / 15 pb-1 82 pb-1 50/54 51 Recorded STAR Pol [%] 48 JLAB UGM, Newport News May 2013 E.C. Aschenauer Year s [GeV] Recorded PHENIX 2001 (Run 2) 200 0.15 pb-1 0.15 pb-1 15 2003 (Run 3) 200 / 0.25 pb-1 30 2005 (Run 5) 200 0.16 pb-1 0.1 pb-1 47 2006 (Run 6) 200 2.7 pb-1 8.5 pb-1 57 2006 (Run 6) 62.4 0.02 pb-1 2008 (Run8) 200 5.2 pb-1 7.8 pb-1 45 2011 (Run11) 500 / 25 pb-1 48 2012 (Run12) 200 9.2/4.3 pb-1 22 pb-1 61/58 52 Recorded STAR Pol [%] 53 JLAB UGM, Newport News May 2013 E.C. Aschenauer Polarized He3 is an effective neutron target d-quark target Polarized protons are an effective u-quark target Therefore combining pp and pHe3 data will allow a full quark flavor separation u, d, ubar, dbar Two physics trusts for a polarized pHe3 program: Measuring the sea quark helicity distributions through W-production Access to Ddbar Caveat maximum beam energy for He3: 166 GeV Need increased luminosity to compensate for lower W-cross section Measuring single spin asymmetries AN for pion production and Drell-Yan expectations for AN (pions) similar effect for π± (π0 unchanged) 3He: helpful input for understanding of transverse spin phenomena Critical to tag spectator protons from 3He with roman pots 53 JLAB UGM, Newport News May 2013 E.C. Aschenauer