Spatial Econometric Analysis Kuan-Pin Lin Portland State University Introduction Spatial Data Cross Section Panel Data yi i xi i yi.
Download ReportTranscript Spatial Econometric Analysis Kuan-Pin Lin Portland State University Introduction Spatial Data Cross Section Panel Data yi i xi i yi.
Spatial Econometric Analysis 1 Kuan-Pin Lin Portland State University Introduction Spatial Data Cross Section Panel Data yi i xi i yi xi' βi i yit i xit it Spatial Dependence Spatial Heterogeneity Spatial Correlation yit xit' βi it Cov ( yi , y j ) 0 Cov ( yit , y jt ) 0, t Cov ( i , j ) 0 Cov ( it , jt ) 0, t Spatial Dependence Least Squares Estimator y Xβ ε βˆ (X ' X)1 X ' y 12 12 2 2 21 n1 n 2 E (ε | X) 0 Var (ε | X) 1n 2n 2 n Spatial Dependence Nonparametric Treatment Robust Inference Spatial Heteroscedasticity Autocorrelation Variance-Covariance Matrix Var(βˆ ) (X ' X)1 XE(εε ')X '(X ' X)1 ˆ (βˆ ) ( X ' X) 1 X '[εε ˆˆ ']X( X ' X) 1 ? Var εˆ y Xβˆ Spatial Dependence Nonparametric Treatment SHAC Estimator kij ˆiˆ j ˆ E (εε ') i, j 1, 2,..., n 1 1 ˆ ˆ ˆ Var (β) ( X ' X) X ' X( X ' X) Kernel Function Normalized Distance dij / d , d bandwidth kij K (dij / d ) 0 kij 1, kii 1, kij k ji Spatial Dependence Parametric Representation Spatial Weights Matrix wii 0 , wij 0 j 1 wij 1, i Spatial Contiguity Geographical Distance n 0 w W 21 wn1 w12 0 wn 2 w1n w2 n 0 First Law of Geography: Everything is related to everything else, but near things are more related than distant things. K-Nearest Neighbors Spatial Dependence Parametric Representation Characteristics of Spatial Weights Matrix Sparseness Weights Distribution Eigenvalues Higher-Order of Spatial Weights Matrix W2, W3, … Redundandency Circularity Spatial Weights Matrix An Example 3x3 Rook Contiguity List of 9 Observations with 1-st Order Contiguity, #NZ=24 1 2 3 1 2,4 4 5 6 2 1,3,5 7 8 9 3 2,6 4 1,5,7 5 2,4,6,8 6 3,5,9 7 4,8 8 5,7,9 9 6,8 W 1st-Order Contiguity (Symmetric) 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 W All-Order Contiguity (Symmetric) 0 1 2 1 2 3 2 3 4 0 1 2 1 2 3 2 3 0 3 2 1 4 3 2 0 1 2 1 2 3 0 1 2 1 2 0 3 2 1 0 1 2 0 1 0 An Example of Kernel Weights K = 1/(ii’ + W) 1 1/2 1/3 1/2 1/3 1/4 1/3 1/4 1/5 1 1/2 1/3 1/2 1/3 1/4 1/3 1/4 1 1/4 1/3 1/2 1/5 1/4 1/3 1 1/2 1/3 1/2 1/3 1/4 1 1/2 1/3 1/2 1/3 1 1/4 1/3 1/2 1 1/2 1/3 1 1/2 1 W1 Non-Symmetric Row-Standardized 0 1/2 0 1/2 0 0 0 0 0 1/3 0 1/3 0 1/3 0 0 0 0 0 1/2 0 0 0 1/2 0 0 0 1/3 0 0 0 1/3 0 1/3 0 0 0 1/4 0 1/4 0 1/4 0 1/4 0 0 0 1/3 0 1/3 0 0 0 1/3 0 0 0 1/2 0 0 0 1/2 0 0 0 0 0 1/3 0 1/3 0 1/3 0 0 0 0 0 1/2 0 1/2 0 W2 Non-Symmetric Row-Standardized 0 0 1/3 0 1/3 0 1/3 0 0 0 0 0 1/3 0 1/3 0 1/3 0 1/3 0 0 0 1/3 0 0 0 1/3 0 1/3 0 0 0 1/3 0 1/3 0 1/4 0 1/4 0 0 0 1/4 0 1/4 0 1/3 0 1/3 0 0 0 1/3 0 1/3 0 0 0 1/3 0 0 0 1/3 0 1/3 0 1/3 0 1/3 0 0 0 0 0 1/3 0 1/3 0 1/3 0 0 Oregon Counties U. S. States Spatial Lag Variables Spatial Independent Variables n wij x'j j 1 W X Spatial Dependent Variables i 1, 2,..., n Spatial Error Variables n wij j Wε j 1 i 1, 2,..., n n wij y j Wy j 1 i 1, 2,..., n Spatial Econometric Models Linear Regression Model with Spatial Variables Spatial Exogenous Model Spatial Lag Model Spatial Error Model Spatial Mixed Model Examples Anselin (1988): Crime Equation Basic Model (Crime Rate) = + (Family Income) + g (Housing Value) + Spatial Lag Model (Crime Rate) = + (Family Income) + g (Housing Value) + l W (Crime Rate) + Spatial Error Model (Crime Rate) = + (Family Income) + g (Housing Value) + = r W + u Data (anselin.txt, anselin_w.txt) Examples Ertur and Kosh (2007): International Technological Interdependence and Spatial Externalities 91 countries, growth convergence in 36 years (1960-1995) Spatial Lag Solow Growth Model ln(y(t)) - ln(y(0)) = + ln(y(0)) + g ln(s) + g ln(n+g+d) + l W ln(y(t)) - ln(y(0))) + Data (data-ek.txt) References L. Anselin, Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, Boston, 1988. L. Anselin. “Spatial Econometrics,” In T.C. Mills and K. Patterson (Eds.), Palgrave Handbook of Econometrics: Volume 1, Econometric Theory. Basingstoke, Palgrave Macmillan, 2006: 901-969. L. Anselin, “Under the Hood: Issues in the Specification and Interpretation of Spatial Regression Models,” Agricultural Economics 17 (3), 2002: 247-267. T.G. Conley, “Spatial Econometrics” Entry for New Palgrave Dictionary of Economics, 2nd Edition, S Durlauf and L Blume, eds. (May 2008). C. Ertur and W. Kosh, “Growth, Technological Interdependence, Spatial Externalities: Theory and Evidence,” Journal of Econometrics, 2007. J. LeSage and R.K. Pace, Introduction to Spatial Econometrics, Chapman & Hall, CRC Press, 2009. H. Kelejian and I.R. Prucha, “HAC Estimation in a Spatial Framework,” Journal of Econometrics, 140: 131-154.