Spatial Econometric Analysis Kuan-Pin Lin Portland State University Introduction Spatial Data Cross Section Panel Data yi i xi i yi.
Download
Report
Transcript Spatial Econometric Analysis Kuan-Pin Lin Portland State University Introduction Spatial Data Cross Section Panel Data yi i xi i yi.
Spatial Econometric Analysis
1
Kuan-Pin Lin
Portland State University
Introduction
Spatial Data
Cross Section
Panel Data
yi i xi i
yi xi' βi i
yit i xit it
Spatial Dependence
Spatial Heterogeneity
Spatial Correlation
yit xit' βi it
Cov ( yi , y j ) 0
Cov ( yit , y jt ) 0, t
Cov ( i , j ) 0
Cov ( it , jt ) 0, t
Spatial Dependence
Least Squares Estimator
y Xβ ε
βˆ (X ' X)1 X ' y
12 12
2
2
21
n1 n 2
E (ε | X) 0
Var (ε | X)
1n
2n
2
n
Spatial Dependence
Nonparametric Treatment
Robust Inference
Spatial Heteroscedasticity Autocorrelation
Variance-Covariance Matrix
Var(βˆ ) (X ' X)1 XE(εε ')X '(X ' X)1
ˆ (βˆ ) ( X ' X) 1 X '[εε
ˆˆ ']X( X ' X) 1 ?
Var
εˆ y Xβˆ
Spatial Dependence
Nonparametric Treatment
SHAC Estimator
kij ˆiˆ j
ˆ
E (εε ')
i, j 1, 2,..., n
1
1
ˆ
ˆ
ˆ
Var (β) ( X ' X) X ' X( X ' X)
Kernel Function
Normalized Distance
dij / d , d bandwidth
kij K (dij / d )
0 kij 1, kii 1, kij k ji
Spatial Dependence
Parametric Representation
Spatial Weights Matrix
wii 0 , wij 0
j 1
wij 1, i
Spatial Contiguity
Geographical Distance
n
0
w
W 21
wn1
w12
0
wn 2
w1n
w2 n
0
First Law of Geography: Everything is related to everything
else, but near things are more related than distant things.
K-Nearest Neighbors
Spatial Dependence
Parametric Representation
Characteristics of Spatial Weights Matrix
Sparseness
Weights Distribution
Eigenvalues
Higher-Order of Spatial Weights Matrix
W2, W3, …
Redundandency
Circularity
Spatial Weights Matrix
An Example
3x3 Rook Contiguity
List of 9 Observations with 1-st
Order Contiguity, #NZ=24
1
2
3
1
2,4
4
5
6
2
1,3,5
7
8
9
3
2,6
4
1,5,7
5
2,4,6,8
6
3,5,9
7
4,8
8
5,7,9
9
6,8
W
1st-Order Contiguity (Symmetric)
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
1
0
0
0
0
1
0
1
0
0
0
1
0
1
0
0
0
0
1
0
1
0
0
1
0
W
All-Order Contiguity (Symmetric)
0
1
2
1
2
3
2
3
4
0
1
2
1
2
3
2
3
0
3
2
1
4
3
2
0
1
2
1
2
3
0
1
2
1
2
0
3
2
1
0
1
2
0
1
0
An Example of Kernel Weights
K = 1/(ii’ + W)
1
1/2
1/3
1/2
1/3
1/4
1/3
1/4
1/5
1
1/2
1/3
1/2
1/3
1/4
1/3
1/4
1
1/4
1/3
1/2
1/5
1/4
1/3
1
1/2
1/3
1/2
1/3
1/4
1
1/2
1/3
1/2
1/3
1
1/4
1/3
1/2
1
1/2
1/3
1
1/2
1
W1
Non-Symmetric Row-Standardized
0
1/2
0
1/2
0
0
0
0
0
1/3
0
1/3
0
1/3
0
0
0
0
0
1/2
0
0
0
1/2
0
0
0
1/3
0
0
0
1/3
0
1/3
0
0
0
1/4
0
1/4
0
1/4
0
1/4
0
0
0
1/3
0
1/3
0
0
0
1/3
0
0
0
1/2
0
0
0
1/2
0
0
0
0
0
1/3
0
1/3
0
1/3
0
0
0
0
0
1/2
0
1/2
0
W2
Non-Symmetric Row-Standardized
0
0
1/3
0
1/3
0
1/3
0
0
0
0
0
1/3
0
1/3
0
1/3
0
1/3
0
0
0
1/3
0
0
0
1/3
0
1/3
0
0
0
1/3
0
1/3
0
1/4
0
1/4
0
0
0
1/4
0
1/4
0
1/3
0
1/3
0
0
0
1/3
0
1/3
0
0
0
1/3
0
0
0
1/3
0
1/3
0
1/3
0
1/3
0
0
0
0
0
1/3
0
1/3
0
1/3
0
0
Oregon Counties
U. S. States
Spatial Lag Variables
Spatial Independent Variables
n wij x'j
j 1
W
X
Spatial Dependent Variables
i 1, 2,..., n
Spatial Error Variables
n wij j
Wε j 1
i 1, 2,..., n
n wij y j
Wy j 1
i 1, 2,..., n
Spatial Econometric Models
Linear Regression Model with Spatial
Variables
Spatial Exogenous Model
Spatial Lag Model
Spatial Error Model
Spatial Mixed Model
Examples
Anselin (1988): Crime Equation
Basic Model
(Crime Rate) = + (Family Income) + g (Housing Value) +
Spatial Lag Model
(Crime Rate) = + (Family Income) + g (Housing Value)
+ l W (Crime Rate) +
Spatial Error Model
(Crime Rate) = + (Family Income) + g (Housing Value) +
= r W + u
Data (anselin.txt, anselin_w.txt)
Examples
Ertur and Kosh (2007): International
Technological Interdependence and Spatial
Externalities
91 countries, growth convergence in 36 years
(1960-1995)
Spatial Lag Solow Growth Model
ln(y(t)) - ln(y(0)) = + ln(y(0)) + g ln(s) + g ln(n+g+d) + l W ln(y(t)) - ln(y(0))) +
Data (data-ek.txt)
References
L. Anselin, Spatial Econometrics: Methods and Models. Kluwer Academic Publishers,
Boston, 1988.
L. Anselin. “Spatial Econometrics,” In T.C. Mills and K. Patterson (Eds.), Palgrave
Handbook of Econometrics: Volume 1, Econometric Theory. Basingstoke, Palgrave
Macmillan, 2006: 901-969.
L. Anselin, “Under the Hood: Issues in the Specification and Interpretation of Spatial
Regression Models,” Agricultural Economics 17 (3), 2002: 247-267.
T.G. Conley, “Spatial Econometrics” Entry for New Palgrave Dictionary of
Economics, 2nd Edition, S Durlauf and L Blume, eds. (May 2008).
C. Ertur and W. Kosh, “Growth, Technological Interdependence, Spatial Externalities:
Theory and Evidence,” Journal of Econometrics, 2007.
J. LeSage and R.K. Pace, Introduction to Spatial Econometrics, Chapman & Hall,
CRC Press, 2009.
H. Kelejian and I.R. Prucha, “HAC Estimation in a Spatial Framework,” Journal of
Econometrics, 140: 131-154.