United Nations Economic Commission for Europe Statistical Division Applying generic view of statistical process to population census Steven Vale, Marlen Jigitekov Statistical Division, UNECE Geneva, 5-6 July.
Download ReportTranscript United Nations Economic Commission for Europe Statistical Division Applying generic view of statistical process to population census Steven Vale, Marlen Jigitekov Statistical Division, UNECE Geneva, 5-6 July.
United Nations Economic Commission for Europe Statistical Division Applying generic view of statistical process to population census Steven Vale, Marlen Jigitekov Statistical Division, UNECE Geneva, 5-6 July 2010 Managing Human Resources in Information Technologies Cooperating with other statistical organizations, creating of regional groups Maximizing involvement of statisticians to development of statistical products and minimizing involvement of software resources • Farmers and millers, but where are engineers?! Improving constantly work efficiency Using open source software Keeping balance between own IT staff and outsourcing 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 2 Generic Statistical Business Process Model 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 3 Standardized process descriptions Harmonised processes Rationalization of software Use of open source and shared components SDMX between components Convergence of business architectures 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 4 MSIS Project MSIS – Management of Statistical Information Systems Objective is to promote joint statistical software development among national and international organizations Project presents Register of Statistical Software used in various statistical organizations Join the project! Web link to the project • http://www1.unece.org/stat/platform/display/msis/Home+Page 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 5 Multidimensional cubes is a standard for data dissemination! Age Country Year 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 6 Cubes with more dimensions can exist, but difficult to draw! 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 7 End-to-end data processing system based on the concept of multidimensional cubes 1. Create supercube 2. Fill in source data 3. Calculate and verify data 4. Create PC-Axis cube 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 8 Validate results TSSL programming language is developed in UNECE to validate data • Example: value for coefficient of fertility should not exceed 6. • Another example: population percentages in the given age group should be within [0% ..100%] range 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 9 7. Data dissemination Most of applications are based on multidimensional cubes concept Examples : PC-Axis, OECD.Stat UNECE uses PC-Axis 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 10 What is PC-Axis? International project, originally designed for population census in Sweden Objective is to develop statistical data dissemination system Project is managed by consortium 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 11 PC-Axis Consortium Unites 39 national statistical agencies and organizations Governing body is Statistical Bureau of Sweden Objective: • Develop statistical data dissemination system • Cooperate to avoid work duplication 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 12 Data output Projecting cubes to tabular format Output of metadata Simple calculations 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 13 Projecting cubes to tabular format 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 14 Data visualization, graphs 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 15 Data visualization, maps 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 16 Advantages of PC-Axis compared to other tools Cubes are ready for browsing, this means • Easy to understand • Quick in data output • Complemented by metadata • Oriented towards public 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 17 Data dissemination stages 7.1 Update output systems 7.2 Produce dissemination products 7.3 Manage release of dissemination products 7.4 Promote dissemination products 7.5 Manage user support 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 18 Examples Annual and quarterly reports based on web statistics and Google Analytics Annual user surveys Follow-up of user requests Promoting new products Improving web site rating at leading search engines by publications, articles, reprots etc. 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 19 Influence of products promotion on popularity of web-site among users 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 20 Geography of users in Google Analytics 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 21 SDMX Standard SDMX – standard of data and metadata exchange. Sponsors are international organizations Main challenge is metadata harmonization 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 22 Conclusion UNECE is ready to provide the technical aid, both in English and Russian, in implementing PC-Axis Questions? • [email protected] • [email protected] 06.11.2015 Steven Vale, Marlen Jigitekov - UNECE Statistical Division Slide 23