ICP-MS SHORT COURSE TOPICS: 1. GENERAL ANALYTICAL CAPABILITIES 2. ICP AS ION SOURCE 3.
Download ReportTranscript ICP-MS SHORT COURSE TOPICS: 1. GENERAL ANALYTICAL CAPABILITIES 2. ICP AS ION SOURCE 3.
ICP-MS SHORT COURSE 1 TOPICS: 1. GENERAL ANALYTICAL CAPABILITIES 2. ICP AS ION SOURCE 3. SAMPLE PREP & SAMPLE INTRO 4. ION EXTRACTION, TRANSMISSION AND FOCUSING 5. MASS ANALYSIS – QUADRUPOLE, MAGNETIC SECTOR 6. ION DETECTION & VACUUM CONSIDERATIONS 7. MATRIX EFFECTS 8. SOLVENT REMOVAL & COLLISION CELLS QUESTIONS WELCOME ANYTIME!!! 2 GENERAL ICP-MS REFS. HANDBOOK OF ICP-MS JARVIS, GRAY AND HOUK, 1992 VIRIDIAN PUBL., [email protected] ICPs IN ANAL. ATOMIC SPECTROMETRY ICPMS MONTASER, ED., VCH, NEW YORK, 1992 & 1998 ICP MS HANDBOOK NELMS, ED. BLACKWELL/CRC, 2005 DEAN, PRACTICAL ICP SPECTROSCOPY, WILEY-VCH, 2005. HOUK, ACCOUNTS CHEM. RESEARCH, 1994, 27, 333. 3 ICP LISTSERVER Send e-mail message to Mike Cheatham at [email protected] Include line: SUBSCRIBE [email protected] 4 5 IONIZATION IN ICP H He 0 .1 M+/(M+ + M) (%) L i Be B C 75 58 5 0 .1 0 .1 9e -4 6e -6 Na M g A l S i P S C l Ar 98 85 Se Br Kr 33 5 0 .6 I Xe 29 8 .5 100 100 K 100 Rb 100 Cs 100 98 Ca Sc Ti V 100 99 99 Y Zr 98 99 La Hf 99 ,1 Sr 96 ,4 Ba 91 ,9 90 ,10 Fr Ra 96 C r M n Fe 98 Nb M o 98 94 96 Tc R u 98 Ta W 95 95 Co 93 Zn 91 90 75 Rh Pd Ag 93 P t Au Hg 96 94 Re O s Ir 93 N i Cu 78 93 62 51 33 G a G e As 98 90 Cd n I Sn 85 99 38 N 96 T l Pb 52 O 14 S b Te 78 66 B i Po F 0 .9 Ne 0 .04 A t Rn 100 97 ,0 .01 92 Ac Ce %M+2 P r N d Pm 96 ,2 90 ,10 99 * Th U 100 * T = 7500 K Pa Sm E u G d Tb 97 ,3 100 * 93 ,7 Np P u Am Cm 100 * ne = 1 x 1015 cm-3 *These elements also make M+2 99 * Bk D y Ho 100 * Cf E r Tm Yb 99 * 92 ,8 E s Fm 91 ,9 M d No Lu Lw ION SAMPLING INTERFACE 6 ION LENS SAMPLER SKIMMER 7 AGILENT 7500 LOAD COIL TORCH SAMPLER SPRAY CHAMBER SKIMMER 8 ICP-MS DEVICE 9 ANALYTE SPECTRA 10 ppb Ce 50X m/z = 136, 138 Ce+ 106 c/s m/z = 140, 142 Ce+2 ~104 c/s CeO+ ~104 c/s Mass to charge ratio CeOH+ 10 ICP-MS CAPABILITIES DETECTION LIMITS 0.1 - 10 ppt routine 10 ppq SOME INSTS. USUALLY BLANK-LIMITED TOTAL SOLUTES 0.1% USUALLY OK 1% USUALLY PROBLEMS UNLESS USE FLOW INJECTION PRECISION 3% RSD ROUTINE 1% GOOD 1% ROUTINE W. INT. STDS. ACCURACY COMPARABLE TO PRECISION IF COMPENSATE FOR INTERFERENCES 11 INTERFERENCES (REL. TO ICP-AES) SPECTRAL OVERLAP LESS FREQUENT LESS SEVERE MORE PREDICTABLE EASIER TO CORRECT MATRIX INTS. WORSE IN ICP-MS - PLUGGING - CHANGE OF SIGNAL (usually loss) 12 13 SAMPLE DISSOLUTION DIGEST SOLID? HNO3 ONLY IF POSSIBLE HF, H2O2, HClO4 IF NECESSARY SAFETY!! APPROVED PROCEDURES MAKE UP IN AQUEOUS HNO3 TYP. 0.1% SOLUTE IN 1% ACID KEEP ACID CONC. CONSTANT TMAH (Me4N+OH-) IN H2O BIO. MATERIALS 14 MICROWAVE SAMPLE DISSOLUTION SEALED VESSELS OK FOR VOLATILE ELEMENTS POWER REGULATED SAFETY VALVES 15 ACIDS NEEDED TO PeKEEP ELEMENTS IN SOLUTION rio d ic Ta b le o f t he Ele m e nt s 1A 1 8A 18 1 H 1 .0 1 2A 2 3 Li 6 .9 4 4 Be 9 .0 1 11 Na 2 3 .0 12 Mg 2 4 .3 3B 3 4B 4 5B 5 6B 6 7B 7 8 9 19 K 3 9 .1 20 Ca 4 0 .1 21 Sc 4 5 .0 22 Ti 4 7 .9 23 V 5 0 .9 24 Cr 5 2 .0 25 Mn 5 4 .9 26 Fe 5 5 .8 37 Rb 8 5 .5 38 Sr 8 7 .6 39 Y 8 8 .9 40 Zr 9 1 .2 41 Nb 9 2 .9 42 Mo 9 5 .9 43 Tc (9 8 ) 55 Cs 133 56 Ba 137 57 La 139 72 Hf 178 73 Ta 181 74 W 184 75 Re 186 87 Fr (2 2 3 ) 88 Ra 226 89 Ac 227 HF 8B Lant ha nide s 59 Pr 141 Act inide s 90 Th 232 91 Pa 231 60 Nd 144 92 U 238 4A 14 5A 15 6A 16 7A 17 2 He 4 .0 0 5 B 1 0 .8 6 C 1 2 .0 7 N 1 4 .0 8 O 1 6 .0 9 F 1 9 .0 14 Si 2 8 .1 15 P 3 1 .0 16 S 3 2 .1 17 Cl 3 5 .4 10 Ne 2 0 .2 18 Ar 3 9 .9 32 Ge 7 2 .6 33 As 7 4 .9 34 Se 7 9 .0 35 Br 7 9 .9 36 Kr 8 3 .8 52 Te 128 53 I 127 54 Xe 131 10 1B 11 2B 12 27 Co 5 8 .9 28 Ni 5 8 .7 29 Cu 6 3 .5 30 Zn 6 5 .4 13 Al 2 7 .0 31 Ga 6 9 .7 44 Ru 101 45 Rh 103 46 Pd 106 47 Ag 108 48 Cd 112 49 In 115 50 Sn 119 51 Sb 122 76 Os 190 77 Ir 192 78 Pt 195 79 Au 197 80 Hg 201 81 Tl 204 82 Pb 207 83 Bi 209 104 105 106 107 108 109 Rf Ha Unh Uns Uno Une ( 2 6 1 ) ( 2 6 2 ) (2 6 3 ) (2 6 2 ) ( 2 6 5 ) (2 6 6 ) 58 Ce 140 3A 13 85 86 84 At Rn Po (2 1 0 ) ( 2 22) (2 0 9 ) HCl 61 62 63 64 65 66 67 68 69 70 71 Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu (1 4 5 ) 1 5 0 152 157 159 162 165 167 169 173 175 93 94 95 96 97 98 99 100 101 102 103 Np Pu Am Cm Bk Cf Es Fm Md No Lr (2 3 7 ) (2 4 4 ) ( 2 4 3 ) ( 2 4 7 ) ( 2 4 7 ) ( 2 5 1 ) ( 2 5 2 ) (2 5 7 ) (2 5 8 ) (2 5 9 ) ( 2 6 0 ) 16 LOW BLANKS? NALGENE OR POLYETHYLENE OK FOR DIW TEFLON CONTAINERS PREFERRED FOR ACIDIC SAMPLES ACID-WASH: 10% HNO3 + 5% H2O2 + 5% HF (CAREFUL!!) WARM OVERNIGHT OR LONGER RINSE & STORE IN DIW DUST-FREE ENVIRONMENT KEEP SAMPLE BOTTLES CAPPED Elemental Scientific Inc. MicroFlow PFA Nebulizer • 100% Teflon • Self-aspiration: – – – – 20 µL/min 50 µL/min 100 µL/min 400 µL/min 17 Na 0 to 5 ppt Calibration PFA-20 with HP4500 18 19 20 S. JET & SKIMMING PROCESS ICP T ~ 5000 K N(v) Barrel shock VELOCITY v (Ar) N(v) Skimmer Collisions Directed flow in zone of silence IN JET T ~ 150 K 0 + VELOCITY 21 Sampler Skimmer Photo by A. L. Gray 22 ION LENS 23 Equipotential contours + + V1 V2 V1, V2 NOT DEP. ON m/z UNLESS: - IE = f (m/z) -SPATIAL DIST. = f (m/z) SIMION - EINZEL LENS 0 +110 0 volts FOCAL POSITION VARIES WITH APPLIED VOLTAGE INITIAL ION KE = 200 eV 0 +140 24 0 volts 25 EINZEL LENS INITIAL KE =200 eV 230 eV FOCAL POSITION VARIES WITH INITIAL ION KE 26 AGILENT 7500 OMEGA LENS Model of Ion Mirror Optics 28 27 VARIAN ICP-MS 28 29 30 QUADRUPOLE MASS ANALYZER y x U + V cos wt - (U + V cos wt) Thermo Elemental 31 POTENTIAL = F (x,y,t) = (U + V cos w t)(x2 - y2)/r02 MATHIEU EQUATIONS a = 4zU/mw 2r02 f = w t/2 q = 2zV/ mw 2r02 + rods d2x/df 2 + (a + 2q cos 2f) x = 0 - rods d2y/df 2 - (a + 2q cos 2f) x = 0 d2z/ df 2 = 0 32 FILTERING ACTION Positive Rods M + heavier ions M + lighter ions Negative Rods 33 SIMION - QUADRUPOLE 10 Ions All m/z = 100 m/z = 100 STABLE 10 Ions All m/z = 90 10 Ions All m/z = 110 34 35 STABILITY DIAGRAM UNSTABLE PATHS a = 4U/(m/z)r02w2 q = 2V/(m/z)r02w2 a q STABILITY DIAGRAM & SCAN LINE SCAN LINE U/V = const M M-1 a a = 4U/(m/z)r02w2 M+1 q = 2V/(m/z)r02w2 q 36 37 PEAK SHAPE, RESOLUTION & ABUNDANCE SENSITIVITY RESOLUTION a U/V RATIO LOW RESOLUTION ION SIGNAL RES. & m/z CONTROLLED ELECTRONICALLY, NO MECH. MOVEMENT MEDIUM RES HIGH RES M-1 M M+1 m/z ABUNDANCE SENS. = (SIGNAL AT M) / (SIGNAL AT M-1 or M+1) ELECTRON MULTIPLIER -2800 V 38 ANALOG OUT, GATE GAIN ~ 106 + -3000 V PULSE COUNTING OUTPUT GAIN ~ 108 39 40 ALTERNATE MASS ANALYZERS MAGNETIC SECTOR Moens & Jakubowski, Anal. Chem. 1998, 70, 251A-256A. Douthitt, ICP Inform. Newsletter 1999, 25 (2), 87-120. Becker & Dietze, Spectrochim. Acta B 1998, 53, 1475-1506. Houk, Handbook of Elemental Speciation, R. Cornelis, Ed., Wiley, 2003. 41 ESA 42 Detector Entrance slit Magnet & flight tube ELEMENT SCANNING HIGH RES ICP-MS DEVICE Quad lenses Extraction lenses Skimmer Sampler ICP Neb & Spray chamber 43 10 ppb Zn PFA 100 64Zn+ 66Zn+ 68Zn+ 67Zn+ 70Zn+ 44 PEAK SHAPES LOW & HIGH RES. Spectra Photoresist Interferences on Cu 12C H + 5 3 12CH 32S16O+ 3 63Cu+ 45 46 MAGNETIC SECTOR MASS ANALYZER + ION MOVING THRU MAGNETIC FIELD STRENGTH B v B Fm v Fm Fm v Fm = MAGNETIC FORCE ALWAYS ACTS PERPENDICULAR TO DIR. OF MOTION 47 MASS DISPERSION 320 280 240 200 7 ions start m/z = 200 D m/z = 20 48 BEAM BROADENING BY SPREAD OF KINETIC ENERGY 7 ions m/z = 200 KE = 2000 eV D KE = 10 eV 49 FOCUSING EFFECT IONS INJECTED OVER VARIOUS ANGLES 7 ions m/z = 200 D injection angle = 1o 50 FINNIGAN ELEMENT DEMO DOUBLE FOCUSING: SIMULTANEOUS ANGULAR & ENERGY FOCUSING 51 Fig. 17. NU Plasma multicollector instrument with zoom lens and multiple electron multiplier detectors. Figure provided by NU Plasma. 52 NIST 610 glass Pb isotopes 40 mm spot MICROMASS ISOPROBE spot 207Pb/206Pb 1 0.91757 0.02 2 0.91747 3 %1se 208Pb/204Pb %1se 2.20277 0.01 38.54770 0.03 0.01 2.20253 0.01 38.58310 0.03 0.91741 0.02 2.20265 0.01 38.56520 0.03 4 0.91723 0.02 2.20216 0.01 38.58606 0.02 5 0.91723 0.02 2.20234 0.01 38.56478 0.04 6 0.91751 0.01 2.18400 0.01 38.30902 0.04 7 0.91761 0.01 2.19877 0.01 38.46679 0.05 8 0.91752 0.02 2.19090 0.02 38.34840 0.03 9 0.91728 0.09 2.20196 0.01 38.57391 0.05 %1se 208Pb/206Pb mean 0.91743 2.19867 38.50500 1SD 0.00015 0.00670 0.10655 %1SD 0.02 0.30 0.28 53 54 MATRIX EFFECTS 55 SOLIDS DEPOSITION IN ICP-MS Douglas & Kerr, JAAS 1988, 3, 744 56 MATRIX EFFECT Olivares & Houk, Anal. Chem 1986, 58, 20. 57 VARIATION OF SIGNAL & MATRIX EFFECT WITH NEB. GAS FLOW Tan & Horlick JAAS 1987, 2, 745. YO, Y(I), Y(II) EMISSION ZONES COURTESY VARIAN 58 59 60 61 Gillson, Tanner, Douglas 62 Co+ Trajectories 80% Ar+ 20% O+ 80% Ar+ 19% O+ 1% U+ 63 INTERNAL STANDARD Co+ Standard Additions Ca Calibration in 38% HF (w/w) 64 PFA-100, PFA endcap, Pt injector Cool plasma conditions Tamapure HF Grade AA10 MARINE SEDIMENT REF. MATERIAL BCSS-1, 0.1% McLaren et al. JAAS 1987 Element CONCENTRATIONS (μg/g ± std dev, n = 4) External Standard Accepted (info) Calibration Addition Value V Mn Co Ni Cu Zn 71 ± 3 156 ± 8 8.9 ± 0.2 43 ± 1 24 ± 1 124 ± 8 93 ± 16 220 ± 19 13 ± 3 57 ± 6 29 ± 3 123 ± 5 93 ± 5 229 ± 15 11 ± 2 55 ± 4 19 ± 3 119 ± 12 As Mo Cd Pb 14 ± 1 3.0 ± 0.1 0.26 ± 0.02 22 ± 1 12 ± 1 1.8 ± 0.2 0.27 ± 0.03 23 ± 2 11 ± 1 (1.9) 0.25 ± 0.04 23 ± 3 65 66 ISOTOPE DILUTION Beauchemin et al., Anal. Chem. 1987, 59, 610. 67 REMOVE POLYATOMIC IONS? ALTER ICP: COOL PLASMA SOLVENT REMOVAL REMOVE/SEPARATE POLY. IONS FROM M+ ANALYTE IONS: HIGH RESOLUTION COLLISION CELLS 68 S+ IE (eV) 10.36 BAD GUYS O2+ IE (eV) 12.063 D0 69 (eV) 6.663 Fe+ 7.87 ArO+ ArN+ ~ 13 ~14 0.312 1.866 Se+ 9.75 Ar2+ ~15 1.25 K+ 4.34 ArH+ ~10 4.00* V+ 6.74 ClO+ 11.1 4.65 Ti+ 6.82 SO+ 10.0 5.43 Zn+ 9.39 SO GOOD GUYS/GALS + 12.34 SOLVENT REMOVAL REDUCE MO+ ANALYSIS OF ORGANIC SOLVENTS IMPROVE SENSITIVITY, ESP. FOR SECTOR INSTRUMENTS (?) 70 Elemental Scientific Inc. MicroFlow PFA Nebulizer • 100% Teflon • Self-aspiration: – – – – 20 µL/min 50 µL/min 100 µL/min 400 µL/min 71 SPRAY CHAMBER & SOLVENT REMOVAL 72 Aerosol out Coolant Drain Fig. 21. Cooled spray chambers for solvent removal. a) cooled double pass Scott chamber b) Cyclone chamber, side and top views. In both chambers, most of the large droplets are deposited at the bends, while fine droplets pass out to the plasma. 73 Comparison of desolvation methods JAAS 1998, 13, 167-174. 74 75 Elemental Scientific Inc. Apex Heated Cyclonic SC (120C/140C) Peltier-Cooled Multipass Condenser 2C/-5C Total Internal Volume 180 ml 76 50 ppq Ce Apex + Element 77 COLLISION CELLS 78 Rowan & Houk, Appl. Spectrosc. 1989, 43, 976. Douglas, Canad. J. Spectrosc. 1989, 34, 38. King & Harrison, Int. J. Mass Spectrom. Ion Processes 1989, 89, 171. Turner, Speakman et al., Plasma Source MS, Developments & Applications, Royal Society, 1997, p. 28. Baranov & Tanner, JAAS 1999, 14, 1133 JASMS 1999, 10, 1083. USE COLLISION - INDUCED DISSOCIATION (CID) &/OR CHEMICAL REACTION TO REMOVE POLY. IONS RETAIN ATOMIC ANALYTE IONS REDUCE KE & SPREAD OF KE OF M+ IONS 79 MULTIPOLE COLLISION CELLS FOR REMOVING POLYATOMIC IONS IN ICP-MS GV PLATFORM (QUADRUPOLE) ISOPROBE PE SCIEX DYNAMIC REACTION CELL THERMO X AGILENT 7500cs S+ IE (eV) 10.36 BAD GUYS O2+ IE (eV) 12.063 D0 80 (eV) 6.663 Fe+ 7.87 ArO+ ArN+ ~ 13 ~14 0.312 1.866 Se+ 9.75 Ar2+ ~15 1.25 K+ 4.34 ArH+ ~10 4.00* V+ 6.74 ClO+ 11.1 4.65 Ti+ 6.82 SO+ 10.0 5.43 Zn+ 9.39 SO GOOD GUYS/GALS + 12.34 ICP PLATFORM, MICROMASS LTD. HEX BIAS = -2.0 VOLTS QUAD BIAS = + 2.0 VOLTS 81 82 Ion Signal vs. He Gas Flow Rate 3 Li Ni Normalized Signal 2.5 In U 2 1.5 1 0.5 0 0 2 4 6 He Gas Flow Rate (ml/min) 8 Hex Bias -2.2, IE = 1.0, Mult = 482, H2 = 0 ml/min 10 MICROMASS PLATFORM 83 84 HEXAPOLE BIAS = -2 volts 100 REL. SIGNAL *POSITIVE STOPPING VOLTAGE ON QUAD REJECTS MOST POLY. IONS V+, Sr+ 50 ArH3O+ 0 1 2 3 4 QUAD POLE BIAS (volts) 5 85 DYNAMIC REACTION CELL (DRC) mass analyzer reaction gas in reaction cell isobar analyte other m/z ions to mass analysis of detector transmitted ions conversion of reactive ions ions from source 86 87 REACTION PROFILES 1e7 1e6 1e5 m/z = 80 1 ppb Se 1e4 1000 m/z = 78 1 ppb Se 100 m/z = 82 1 ppb Se m/z = 78 10 m/z = 80 1 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 CH4 FLOW RATE (L/min) 0.85 0.95 88 DEATH TO ArCl+ ! ION SIGNAL 1 ppb As + 1000 ppm NaCl 1000 ppm NaCl 25 c/s 1 ppb As 750 c/s DIW m/z = 75 Infinity TM Lens - High Efficiency Ion Guide 89 90 AGILENT 7500cs OCTOPOLE COLLISION CELL 91 KINETIC ENERGY DISCRIMINATION 600 NO COLL. GAS Analyte Interferent 500 400 N 300 200 100 KE 2 1. 6 1. 2 0. 8 0. 4 0 0 92 POLY. ION HAS LARGER CROSS SECTION FOR KE LOSS 600 Analyte Interferent 500 POTENTIAL BARRIER STOPS POLY. IONS 400 N 300 200 100 KE 2 1. 6 1. 2 0. 8 0. 4 0 0 1 ppb V, Cr, Mn, Ni, Co, Cu, Zn, As 500 ppm each C, Na, S, Cl, Ca 93 COLLISION REACTION INTERFACE VARIAN, KALINITCHENKO et al. 94 SKIMMER + 74 mL/min H2 or 110 mL/min He ICP SAMPLER 95 96 Seronorm Urine 2525 97 ACKNOWLEDGMENTS TRANSGENOMIC CETAC ELEMENTAL SCIENTIFIC THERMO FINNIGAN GV (MICROMASS) PE SCIEX LECO THERMO ELEMENTAL AGILENT VARIAN 98