From the Horndeski Lagrangian to observations

Download Report

Transcript From the Horndeski Lagrangian to observations

Horndeski Lagrangian:
too big to fail?
Luca Amendola
University of Heidelberg
in collaboration with Martin Kunz,
Mariele Motta, Ippocratis Saltas, Ignacy
Sawicki
Benasque 2012
Observations are converging…
…to an unexpected universe
Benasque 2012
Classifying the unknown, 1
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
Cosmological constant
Dark energy w=const
Dark energy w=w(z)
quintessence
scalar-tensor models
coupled quintessence
mass varying neutrinos
k-essence
Chaplygin gas
Cardassian
quartessence
quiessence
phantoms
f(R)
Gauss-Bonnet
anisotropic dark energy
brane dark energy
backreaction
void models
degravitation
TeVeS
oops....did I forget your model?
Benasque 2012
Classifying the unknown, 2
a)
b)
c)
d)
Lambda and w(z) models (i.e. change only the expansion)
modified matter (i.e. change the way matter clusters)
modified gravity (i.e. change the way gravity works)
non-linear effects (i.e. change the underlying symmetries)
Benasque 2012
Prolegomena zu einer
künftigen
jedenjeden
künftigen
DarkMetaphysik
Energy physik
©Kant
Observational requirements:
Physical requirements:
A) Isotropy
Scalar field
B) Large abundance
C) Slow evolution
D) Weak clustering
Benasque 2012
V𝑉
β‰ˆ 𝐻2 0
V𝑉′
β‰ͺ𝑉
V𝑉′′
β‰ͺ𝑉
Theorem 1: A quintessential scalar field
The most general 4D scalar field theory with second order equation of motion

οƒΉ
4
dx
ο€­
g
L
+
L
matter οƒΊ
οƒͺοƒ₯ i

 i

οƒΌ First found by Horndeski in 1975
οƒΌ rediscovered by Deffayet et al. in 2011
οƒΌ no ghosts, no classical instabilities
οƒΌ it modifies gravity!
οƒΌ it includes f(R), Brans-Dicke, k-essence, Galileons, etc etc etc
Benasque 2012
Simplest MG: f(R)
The simplest Horndeski model which still produces
a modified gravity: f(R)
 dx
4
g  f R + Lmatter 
οƒΌ equivalent to a Horndeski Lagrangian without kinetic terms
οƒΌ easy to produce acceleration (first inflationary model)
οƒΌ high-energy corrections to gravity likely to introduce higherorder terms
οƒΌ particular case of scalar-tensor and extra-dimensional theory
Benasque 2012
Theorem 2: the Yukawa correction
Every Horndeski model induces at
linear level, on sub-Hubble scales, a Newton-Yukawa potential
GM
ο€­r /
 (r ) ο€½ ο€­
(1   e )
r
where Ξ± and Ξ» depend on space and time
Every consistent modification of gravity
based on a scalar field generates
this gravitational potential
Benasque 2012
The next ten years of DE research
Combine observations of background, linear
and non-linear perturbations to reconstruct
as much as possible the Horndeski model
… or to rule it out!
Benasque 2012
The great Horndeski Hunt
Let us assume we have only
1) pressureless matter
2) the Horndeski field
and
Benasque 2012
Background: SNIa, BAO, …
Then we can measure H(z) and
1
dz
D( z ) ο€½
sinh( H 0  k 0 
)
H ( z)
H 0  k 0
and therefore Ξ©π‘˜0
Then we can measure everything up to Ξ©π‘š0
Benasque 2012
Two free functions
The most general linear, scalar metric
ds 2 ο€½ a 2 [(1  2)dt 2 ο€­ (1  2)(dx 2  dy 2  dz 2 )]
At linear order we can write:
 Poisson’s equation
𝛻 2 Ξ¨ = 4πœ‹πΊ π‘Œ π‘˜, π‘Ž πœŒπ‘š 𝛿 π‘š
 anisotropic stress
 

 (k0, aο€½) ο€½ ο€­

Benasque 2012
Modified Gravity at the linear level
 standard gravity
 scalar-tensor models
 f(R)
 DGP
 coupled Gauss-Bonnet
Y (k , a) ο€½ 1
 (k , a) ο€½ 1
G* 2( F  F '2 )
Y (a) ο€½
FGcav ,0 2 F  3F '2
F '2
 (a) ο€½ 1 
F  F '2
k2
1  4m 2
*
G
a R,
Y (a) ο€½
k2
FGcav ,0
1  3m 2
a R
Boisseau et al. 2000
Acquaviva et al. 2004
Schimd et al. 2004
L.A., Kunz &Sapone 2007
k2
a2 R
 (a) ο€½ 1 
k2
1  2m 2
a R
m
1
;  ο€½ 1  2 Hrc wDE
3
2
 (a) ο€½ 1 
3 ο€­ 1
Bean et al. 2006
Hu et al. 2006
Tsujikawa 2007
Y (a) ο€½ 1 ο€­
Y (a) ο€½ ...
 (a) ο€½ ...
Benasque 2012
Lue et al. 2004;
Koyama et al. 2006
see L. A., C. Charmousis,
S. Davis 2006
Modified Gravity at the linear level
Every Horndeski model is characterized in the linear regime
and for scales 𝑐𝑠 π‘˜ ≫ 1 by the two functions
a1 ο€½ 2 B6 B8ο€­2
a2 ο€½ B8 B6ο€­1
de Felice, Tsujikawa 2011
Benasque 2012
Linear observables
Matter conservation equation
If we could observe directly the
growth rate…
3
βˆ’ π‘Œ(π‘˜, 𝑧)Ξ©π‘š
2
we could test the HL…
Benasque 2012
𝛿′
𝑓=
𝛿
Reconstruction of the metric
ds2 ο€½ a2[(1  2)dt 2 ο€­ (1  2)(dx2  dy 2  dz 2 )]
massive particles respond to Ξ¨
massless particles respond to Ξ¦-Ξ¨
Benasque 2012
Linear observables
π›Ώπ‘”π‘Žπ‘™ π‘˜, 𝑧 = 𝐺(π‘˜, 𝑧) 𝑏(π‘˜, 𝑧) 𝜎8 𝛿𝑑,0 (π‘˜)
Benasque 2012
Three linear observables
Amplitude
Redshift distortion
clustering
lensing
Ξ£ = π‘Œ(1 + πœ‚)
Lensing
Benasque 2012
Two model-independent ratios
Amplitude/Redshift distortion
Lensing/Redshift distortion
Benasque 2012
f
P1 ο€½
b
m0
P2 ο€½
f
Observing the HL
Lensing/Redshift distortion
m0
P2 ο€½
f
If we can obtain an equation for P2
then we can test the HL
Benasque 2012
Two model-independent ratios
We combine now growth rate and lensing
Benasque 2012
A consistency equation
m0
P2 ( k , z ) ο€½
f
Differentiating P2 and
combining with the growth rate and lensing equations we obtain
a consistency relation for the HL valid for every k
that depends on 8 functions of z
𝐢 π‘˜; 𝑓𝑖 𝑧 =
Benasque 2012
A consistency equation
𝑓𝑖 =
If we estimate P2(k,z) for many k’s we
have an overconstrained system of equations
𝐢(π‘˜1 ; 𝑓𝑖 (𝑧)) = 0
𝐢(π‘˜2 ; 𝑓𝑖 (𝑧)) = 0
𝐢(π‘˜3 ; 𝑓𝑖 (𝑧)) = 0
𝐢(π‘˜4 ; 𝑓𝑖 (𝑧)) = 0
……..
If there are no solutions, the HL is disproven!
Benasque 2012
Reconstructing the HL ?
We can estimate
𝑓𝑗 =
And therefore partially reconstruct the HL
but the reconstruction is not unique:
an infinite number of HL will give the same background
and linear dynamics
Benasque 2012
Conclusions
β€’ The (al)most general dark energy model is the Horndeski
Lagrangian
β€’ It contains a specific prescription for how gravity is
modified, the Yukawa term
β€’ Linear cosmological observations constrain a particular
combination of the HL functions
β€’ Quantities like Ξ©π‘š0 , 𝑓, π‘“πœŽ8 (𝑧) are unobservable with linear
observations
β€’ In principle, observations in a range of scales and redshifts
can rule out the HL
The HL is not too big to fail!
(but it is too big to be reconstructed)
Benasque 2012