Forecasting-2 Forecasting -2.2 Regression Analysis Ardavan Asef-Vaziri Chapter 7 Demand Forecasting in a Supply Chain Ardavan Asef-Vaziri 6/4/2009 Exponential Smoothing 1
Download ReportTranscript Forecasting-2 Forecasting -2.2 Regression Analysis Ardavan Asef-Vaziri Chapter 7 Demand Forecasting in a Supply Chain Ardavan Asef-Vaziri 6/4/2009 Exponential Smoothing 1
Forecasting-2 Forecasting -2.2 Regression Analysis Ardavan Asef-Vaziri Chapter 7 Demand Forecasting in a Supply Chain Ardavan Asef-Vaziri 6/4/2009 Exponential Smoothing 1 Forecasting-2 Associative (Causal) Forecasting -Regression The primary method for associative forecasting is Regression Analysis. The relationship between a dependent variable and one or more independent variables. The independent variables are also referred to as predictor variables. We only discuss linear regression between two variables. We consider the relationship between the dependent variable (demand) and the independent variable (time). Ardavan Asef-Vaziri 6/4/2009 Exponential Smoothing 2 Forecasting-2 Regression Method Ft b0 b1t Computed relationship 50 40 30 20 10 0 0 5 10 15 20 25 Least Squares Line minimizes sum of squared deviations around the line Ardavan Asef-Vaziri 6/4/2009 Exponential Smoothing 3 Forecasting-2 0.92 Correlation Coefficient (-1 and +1) we want it close to +1 0.84 Coefficient of Determination: Large (0 to 1) we want close to 1 0.82 To know if the line had + or - slope we look at X Varaible 1 or Multiple R 4.07 Standard Error is the standard deviation of our forecast 12 Something similar to 1.25MAD Multiple R R Square Adjusted R Square Standard Error Observations ANOVA SS df 1 10 11 Regression Residual Total Intercept X Variable 1 Ardavan Asef-Vaziri 873.0 165.9 1038.9 MS 873.0 16.6 F Significance F 52.61 2.74837E-05 Upper 95% Lower 95% P-value t Stat Coefficients Standard Error 2.686944916 1.883208505 0.089052275 -0.926808842 11.04696388 5.06 0.219632305 7.253137252 2.74837E-05 1.103651983 2.082394529 1.59 We want is less that .05 Y=5.06+1.59t 6/4/2009 Exponential Smoothing 4 Forecasting-2 Regression: Chart the Data Period 1 2 3 4 5 6 7 8 9 10 Demand 117 126 210 222 262 310 278 338 379 388 Demand 450 400 350 300 250 Demand 200 150 100 50 0 0 Ardavan Asef-Vaziri 6/4/2009 2 4 6 8 10 12 Exponential Smoothing 5 Forecasting-2 Regression: The Same as Solver but This Time Data Analysis Ardavan Asef-Vaziri 6/4/2009 Exponential Smoothing 6 Forecasting-2 Data/Data Analysis/ Regression Ardavan Asef-Vaziri 6/4/2009 Exponential Smoothing 7 Forecasting-2 Regression: Tools / Data Analysis / Regression Ardavan Asef-Vaziri 6/4/2009 Exponential Smoothing 8 Forecasting-2 Regression Output SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 0.98 0.95 0.95 22.21 10 Correlation Coefficient +↑. Close to + 1 Coefficient of Determination ↑ Close to 1 Standard Deviation of Forecast ↓ If the first period is 1, next period is 10+1 = 11 ANOVA Regression Residual Total df 1 8 9 SS 77771 3945 81716 MS 77771 493 F 158 Significance F 1.51524E-06 Intercept X Variable 1 Coefficients 94.13 30.70 Standard Error 15.17 2.44 t Stat 6.21 12.56 P-value 0.000258 0.000002 Lower 95% 59.15 25.07 Upper 95% 129.12 36.34 P-value ↓ less than 0.05 Ardavan Asef-Vaziri 6/4/2009 Exponential Smoothing 9 Forecasting-2 Regression Output SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 0.98 0.95 0.95 22.21 10 ANOVA Regression Residual Total df 1 8 9 SS 77771 3945 81716 MS 77771 493 F 158 Significance F 1.51524E-06 Intercept X Variable 1 Coefficients 94.13 30.70 Standard Error 15.17 2.44 t Stat 6.21 12.56 P-value 0.000258 0.000002 Lower 95% 59.15 25.07 Upper 95% 129.12 36.34 Ft = 94.13 +30.71t What is your forecast for the next period. F11 = 94.13 +30.71(11) = 431.7 Mean Forecast = 431.7, Standard Deviation of Forecast = 22.21 Ardavan Asef-Vaziri 6/4/2009 Exponential Smoothing 10