Crystal and Liquid Crystal Phase Transitions in Colloidal Suspensions of Spheres, Rods, and Plates H.N.W.

Download Report

Transcript Crystal and Liquid Crystal Phase Transitions in Colloidal Suspensions of Spheres, Rods, and Plates H.N.W.

Crystal and Liquid Crystal Phase
Transitions in Colloidal Suspensions
of Spheres, Rods, and Plates
H.N.W. Lekkerkerker
Van ’t Hoff Laboratorium voor
Fysische en Colloidchemie
Debye Instituut
Universiteit Utrecht
Peter Debye
1884 - 1966
Punkt und
Linie zu Fläche
&
Entropy
Wassily Kandinsky (1866-1944)
Bauhaus 1926
Photo Kandinsky
examen
Oskar Schlemmer
Entropie und
Wahrscheinlichkeit
S = k ln W
Ludwig Boltzmann, 1844 – 1906
Professor Theoretische Physik,
München, 1889 - 1893
Entropy of mixing
Outline
 A brief introduction to colloids
 Hard problems with hard spheres
 Shape matters
 Entropy engineering
 Concluding remarks
Ein Kolloid: was ist das eigentlich?
quarks protonen,
neutronen
10-15
1fm
atomen &
moleculen
10-12
1pm
10-9
1nm
COLLOIDS
International Union of Pure and Applied Chemistry
“The term colloidal refers to a state of subdivision,
implying that the molecules or polymolecular particles
dispersed in a medium have at least in one direction a
dimension roughly between 1 nm and 1 mm.”
10-6
1mm
10-3
1mm
1
1m
103
1km
106
Wolfgang Ostwald 1883-1943
Die Welt der vernachlässigten
Dimensionen
Colloids in nature: milk
Colloids in nature: blood
7 mm
Rode
bloedcellen
in ‘gezond’
bloed
Rode
bloedcellen
in ‘ziek’
bloed
Colloids in nature: clay
1 mm
Natural and synthetic colloids: Latex
• Paint
• Condom
Synthetic magnetic colloids
Magnetic colloids in
magnetotactic bacteria
A. Philipse, D. Maas, Langmuir 2002.
Ann. d. Physik, 17, 549 (1905)
Albert Einstein (1879-1955)
Colloids as atoms
Jean Perrin (1870-1942)
Nobel prize Physics 1926
“For his work on the discontinuous
structure of matter, and especially for his
discovery of sedimentation equilibrium.”
10 mm
“The same equations have the same solutions.”
Richard Feynman (1918-1988)
…so what is new?
• Colloìds: variable shape
• Colloids: variable interactions
energie
W
W
repulsie
W
repulsie
repulsie
0
0
attractie
R
afstand
attractie
R
0
R
new and fascinating behaviour!
Die Geschichte vom
hässlichen Entlein
Die Kolloidforschung ist aus dem vernachlässigsten
Tummelplatz einiger Chemiker und Ingenieure ein
blühendes und faszinierendes interdiszplinares
Forschungsgebiet geworden
Peter Schurtenberger
Physik in unserer Zeit 34, 3 (2003)
Outline
 A brief introduction to colloids
 Hard problems with hard spheres
 Shape matters
 Entropy engineering
 Concluding remarks
Packing of spheres
Grocers the world over know the most efficient way to pack spheres.
Packing efficiency
straal R
roosterconstante
a2 2 R
4
volumefractie  
4
3
3
a
R
3


3 2
 0.74048...
“Kepler’s conjecture”
1611
Johannes Kepler “De Nive sexangula”
Geen stapeling kan dichter zijn dan een
vlakgecentreerd kubisch rooster
1900
David Hilbert: 23 Mathematische Probleme.
Vortrag gehalten auf dem internationalen
Mathematiker-Kongress zu Paris
Problem 18: Bolstapelingsprobleem
1997
Kepler’s conjecture finally confirmed!?
Thomas Hales
Johannes
Kepler
Hard spheres with thermal motion
Computer simulations: Alder & Wainwright (1957)
Wood & Jacobson (1957)
F
+
K
Fluïdum
0.494
Kristal
0.545
volumefractie
0.740
No attraction yet phase transition!?
“...the transition goes a little bit against
intuition; that is why so many people have
difficulty with it, and surely, I am one of
those.”
George E. Uhlenbeck
(1900-1988)
January
1957
“I think it is quite unnecessary to have an
attractive force to achieve a crystalline phase
and one can produce simple intuitive
arguments for that.”
(1907-1959)
Over
de continuiteit van den gas –
en vloeistoftoestand.
Proefschrift Leiden, 1873.
Condensatie vereist
attractie en repulsie
(1837-1923)
maar kristallisatie…
Ordering by entropy
Crystal:
Ordered positions
Fluid:
Disordered positions
Sconfigurations
Fluid
high
Crystal
low
Sfree volume
low
high
Opal: ordered silica spheres
Bragg’s law
(1912):
2 d cos   
Sanders (1968)
Geochemical formation of opal
O
Si
Al
Fe
Ca
Na
K
46.5
28.0
8.1
5.1
3.5
2.8
2.5
Mg
Ti
H
C
Cl
P
S
2.0
0.58
0.20
0.20
0.19
0.11
0.10
n Si(OH)4
(SiO2)n + 2n H2O
Stöber synthesis
R
R
ethanol + ammonia
R
R
OH
OH
tetraethoxysilane
HO
Si
HO
OH
Si
OH + C18H37OH
O
O
Si
Si
N:
C ount
15
95
M ean:
246.0nm
S t. dev.:
7.3nm
P olydisp.:
2.9%
10
5
210 nm
0
220
230
240
250
260
R adius (nm )
270
280
Si
OH
HO
Si
very monodisperse!
C18H37
Si
T
Si
C18H37
Crystals of
colloidal spheres
Microscopy forever!
1905
2005
Confocal
fluorescence
microscopy
kristal
fluïdum
5 mm
kristal
Verhaegh en Van Blaaderen (1994).
fluïdum
5 mm
Abb. 4. Versuchsanordnung, mit der Max
Max von Laue 1879-1960
Privatdozent München 1909-1912
Nobel prize Physics 1914
von Laue, Walter Friedrich und Paul Knipping
1912 die Interferenz von Röntgenstrahlen
bei der Beugung in Kristallen entdeckten.
Synchrotron Röntgenverstrooiing
European Synchrotron
Radiation Facility, Grenoble
(030)
(220)
(120)
(210)
(020)
(110)
(300)
(010)
(200)
(100)
X-ray beam
Close-packed crystals:
FCC:
HCP:
RHCP:
…ABCABC…
…ABABAB…
…ABACBC…
h  k  3n h  k  3n
1
1
1
0
0.25
00.25
• Petukhov, Aarts, Dolbnya, de Hoog, Kasapidou, Vroege, Bras, HNWL, Phys.Rev.Let., 88, 208301 (2002);
• Petukhov, Dolbnya, Aarts, Vroege, HNWL, Phys.Rev.Let., 90, 028304 (2003).
Outline
 A brief introduction to colloids
 Hard problems with hard spheres
 Shape matters
 Entropy engineering
 Concluding remarks
Lars Onsager (1903-1976)
Nobel prize Chemistry 1968
Physical Review (1942)
Isotroop-Nematische fase-overgang
Onsager (1942,1949):
de Isotroop-Nematische
fase-overgang in een
suspensie van staven
komt door
verlies van oriëntatieentropie
en
winst van vrij volumeentropie
Rods at the van ‘t Hoff laboratory
Al-(OR)3 in acidic aqueous solution
150 0C, 1 day
boehmite
AlOOH
Al
Fe
Ca
Na
K
46.5 28.0
8.1
5.1
3.5
2.8
2.5
Mg
H
C
Cl
P
S
2.0
Coating PIB
150-300
nm
P.A.Buining et al., 1992
O
Si
Ti
0.58 0.20 0.20 0.19 0.11 0.10
Isotropic-nematic phase equilibrium
I
N
boehmiet (AlOOH)
dikte = 9 nm
lengte = 160 nm
volumefractie = 10%
Thermodynamic stability of a smectic
phase in a system of hard rods
D. Frenkel, HNWL, A. Stroobants, Nature, 1988
New rods at the van ‘t Hoff laboratory: FeOOH
O
Si
Al
Fe
Ca
Na
K
46.5
28.0
8.1
5.1
3.5
2.8
2.5
Mg
Ti
H
C
Cl
P
S
2.0
0.58
0.20
0.20
0.19
0.11
0.10
D. Thies
A. Petukhov
G.J. Vroege
Smectic A
reflected light crossed polarizers
Lars Onsager (1903-1976)
Nobel prize Chemistry 1968
Physical Review (1942)
Isotropic-Nematic Phase
Transition of Colloidal Platelets
Orientational entropy decreases
Free volume entropy increases
Al-(OR)3 in acidic aqueous solution
85 0C, 3 days
A.M. Wierenga, T.A.J. Lenstra, A.P.
Philipse, 1998
gibbsite, Al(OH)3
Coating PIB
F.M vd Kooij, HNWL, 1998
200
nm
Isotropic-Nematic Phase Transition
I
N
gibbsiet (Al(OH)3)
diameter = 200 nm
dikte = 6 nm
volumefractie = 20%
Isotroop
Nemaat
Columnair
Kristal
J.A.C. Veerman, D. Frenkel, Phys. Rev. A (1992)
I
N
19%
N
28%
N
C
41%
C
47%
volumefractie
F.M. van der Kooij, K. Kassapidou, HNWL, Nature (2000)
Columnar phase of colloidal gibbsite plates with <D>=200 nm
GREEN
~ 530 nm
hexagonal lattice
with spacing d
white light
RED
~ 650 nm
Bragg condition:
2 n d sin  = 
measure
index of refraction = 1.5
2GREEN = 107°
2RED = 160°  d = 220 nm
Distance between
the columns:
a = 2d/3 = 254 nm
D. van der Beek & HNWL, Langmuir (2004)
SEM of dried columnar phase
D. van der Beek, S. Sacanna (2004)
Columnar
crystal: Hexagonal
arrangement
of columns
DUBBLE @ ESRF
A.V. Petukhov, D. van der Beek,
S.M. Oversteegen, G.J. Vroege, HNWL
(030)
(120)
(020)
(010)
(110)
(100)
(210)
(200)
Outline
 A brief introduction to colloids
 Hard problems with hard spheres
 Shape matters
 Entropy engineering
 Concluding remarks
Scientific American, 2001
latexbollen in lucht
luchtbollen in titaandioxyde
Imhof & Pine (1997)
Wijnhoven & Vos (1998)
“From Do-it-yourself
organization
to
self organization”
(A. van Blaaderen)
Sea Mouse Aphrodita
Natur wird zunehmend zum Vorbild für wissenschaftliche
und technische Entwicklungen.
Outline
 A brief introduction to colloids
 Hard problems with hard spheres
 Shape matters
 Entropy engineering
 Concluding remarks
Ordering in colloidal suspensions
Kristal
Fluïdum
Isotroop
Isotroop
Nemaat
Nemaat
Columnair
Smectisch
concentration
Kristal
Kristal
Alder en
Wainwright
(1957)
Veerman en
Frenkel
(1992)
Frenkel, HNWL
en Stroobants
(1988)
Fundamental Research
Chemistry
Colloids
Geology
Physics
Biology
Industrial Applications
In onderzoek
gaat het om
vier G’s:
Paul Ehrlich (1854-1915)
Geduld,
Geschick,
Geld...
und Glück!
Robert Finsy, Philipe Coulon, René Luyckx, Rudy van der Haegen, Erik Moreels
Theo Overbeek, Phil de Bruyn, Agienus Vrij, Kees de Kruif, Jan Dhont, Daan
Frenkel, Albert Philipse, Gert Jan Vroege, Willem Kegel, Alfons van Blaaderen,
Ben Erné
Alain Stroobants, Stephen Picken, George van Aken, Carla Smits, Paul Buining,
Johan Buitenhuis, Jeroen van Duijneveldt, Dominique Thies-Weesie, Arnout
Imhof, Henk Verduin, Nynke Verhaegh, Anieke Wierenga, Igor Bodnar, Haran
Pathmamanoharan, Michel van Bruggen, Bianca van der Zande, Gerrit
Vliegenthart, Felix van der Kooij, Els de Hoog, Tjerk Lenstra, Rik Wensink, David
van der Beek, Dirk Aarts, Nikoleta Simeonova, Roel Dullens
Wim Briels, Bela Mulder, Hong Xu, Yaode Yan, Felicity Lodge, Daniela Asnaghi,
Hans Tromp, Paul van der Schoot, Jan Groenewold, Mohamed Ramzi, Katarina
Kassapidou, Remco Tuinier, Valerie Anderson, Andrei Petukhov, Martijn
Oversteegen, Judith Wijnhoven, Marcel Vogel, Annemieke ten Brinke
Marina Uit de Bulten, Mieke Lanen, Kees Rietveld, Chantal Vonk, Bonny Kuipers,
Emile Bakelaar
Marjolein Dijkstra, René van Roij
Theo Odijk
...en vele anderen, waar ook ter wereld!
Bedankt!
Danke für Ihre Aufmerksamkeit!