CATPAC & LIWC Key output and findings D.K. & B.L. How CATPAC is Used • Reads text to identify most important words – Can.
Download ReportTranscript CATPAC & LIWC Key output and findings D.K. & B.L. How CATPAC is Used • Reads text to identify most important words – Can.
CATPAC & LIWC Key output and findings D.K. & B.L. How CATPAC is Used • Reads text to identify most important words – Can determine patterns of similarity – Produces simple frequency counts • The neural network is self-organizing – Finds patterns of usage between words – Uses clustering algorithms – Produces perceptual maps • • • • • TOTAL TOTAL TOTAL TOTAL WORDS UNIQUE WORDS EPISODES LINES 300 25 294 60 THRESHOLD 0.000 RESTORING FORCE 0.100 CYCLES 1 FUNCTION Sigmoid (-1 - +1) CLAMPING Yes • • • • • • • • • • • • • • • • • • • • • • • • • • • • • DESCENDING FREQUENCY LIST CASE WORD FREQ PCNT FREQ --------------- ---- ---- ---I 47 15.7 201 A 28 9.3 153 MY 19 6.3 89 I'M 16 5.3 76 FOR 15 5.0 85 AM 14 4.7 86 BE 13 4.3 75 YOU 13 4.3 63 OUT 12 4.0 73 KNOW 10 3.3 62 HAVE 9 3.0 54 ME 9 3.0 51 ON 9 3.0 62 SOMEONE 9 3.0 59 WITH 9 3.0 58 LIFE 8 2.7 51 LOVE 8 2.7 46 NOT 8 2.7 45 SHOULD 7 2.3 42 SO 7 2.3 49 ABOUT 6 2.0 42 ALL 6 2.0 39 CAN 6 2.0 39 NO 6 2.0 41 WHAT 6 2.0 39 CASE PCNT ---68.4 52.0 30.3 25.9 28.9 29.3 25.5 21.4 24.8 21.1 18.4 17.3 21.1 20.1 19.7 17.3 15.6 15.3 14.3 16.7 14.3 13.3 13.3 13.9 13.3 ALPHABETICALLY SORTED LIST CASE WORD FREQ PCNT FREQ --------------- ---- ---- ---A 28 9.3 153 ABOUT 6 2.0 42 ALL 6 2.0 39 AM 14 4.7 86 BE 13 4.3 75 CAN 6 2.0 39 FOR 15 5.0 85 HAVE 9 3.0 54 I 47 15.7 201 I'M 16 5.3 76 KNOW 10 3.3 62 LIFE 8 2.7 51 LOVE 8 2.7 46 ME 9 3.0 51 MY 19 6.3 89 NO 6 2.0 41 NOT 8 2.7 45 ON 9 3.0 62 OUT 12 4.0 73 SHOULD 7 2.3 42 SO 7 2.3 49 SOMEONE 9 3.0 59 WHAT 6 2.0 39 WITH 9 3.0 58 YOU 13 4.3 63 CASE PCNT ---52.0 14.3 13.3 29.3 25.5 13.3 28.9 18.4 68.4 25.9 21.1 17.3 15.6 17.3 30.3 13.9 15.3 21.1 24.8 14.3 16.7 20.1 13.3 19.7 21.4 CATPAC frequencies •WARDS METHOD •A M H Y I N I A O S S W A N K W A M C L B S F L O •. Y A O ' O . B U O O I L O N H M E A O E H O I N •. . V U M T . O T . M T L . O A . . N V . O R F . •. . E . . . . U . . E H . . W T . . . E . U . E . •. . . . . . . T . . O . . . . . . . . . . L . . . •. . . . . . . . . . N . . . . . . . . . . D . . . •. . . . . . . . . . E . . . . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . •^^^ . . . . . . . . . . . . . . . . . . . . . . . •^^^^^ . . . . . . . . . . . . . . . . . . . . . . •^^^^^^^ . . . . . . . . . . . . . . . . . . . . . •^^^^^^^^^ . . . . . . . . . . . . . . . . . . . . •^^^^^^^^^^^ . . . . . . . . . . . . . . . . . . . •^^^^^^^^^^^^^ . . . . . . . . . . . . . . . . . . •^^^^^^^^^^^^^ . . . . . . . . . . . . . ^^^ . . . •^^^^^^^^^^^^^ . . . . . . . . . . . . . ^^^ . ^^^ •^^^^^^^^^^^^^ . . . . . . . . . ^^^ . . ^^^ . ^^^ •^^^^^^^^^^^^^ . . . . . . . ^^^ ^^^ . . ^^^ . ^^^ •^^^^^^^^^^^^^ . . . . . ^^^ ^^^ ^^^ . . ^^^ . ^^^ •^^^^^^^^^^^^^ ^^^ . . . ^^^ ^^^ ^^^ . . ^^^ . ^^^ •^^^^^^^^^^^^^ ^^^ . . . ^^^ ^^^ ^^^ . . ^^^ ^^^^^ •^^^^^^^^^^^^^ ^^^ . . . ^^^ ^^^ ^^^ ^^^ ^^^ ^^^^^ •^^^^^^^^^^^^^ ^^^ . ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^^^ •^^^^^^^^^^^^^ ^^^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^^^ •^^^^^^^^^^^^^ ^^^^^ ^^^ ^^^ ^^^ ^^^^^^^ ^^^ ^^^^^ •^^^^^^^^^^^^^ ^^^^^ ^^^ ^^^ ^^^ ^^^^^^^ ^^^^^^^^^ •^^^^^^^^^^^^^ ^^^^^^^^^ ^^^ ^^^ ^^^^^^^ ^^^^^^^^^ •^^^^^^^^^^^^^ ^^^^^^^^^ ^^^^^^^ ^^^^^^^ ^^^^^^^^^ •^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^ ^^^^^^^ ^^^^^^^^^ •^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^ •^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ •^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Dendogram output CATPAC 3-D Perceptual Map Operating Issues with CATPAC • Exclude dictionary: must amend the default and save or create in correct format • Text input: separating multiple texts requires insertion of a slide barrier • Refining the exclude list and analysis settings can be a long, incremental process • The 3-D visualizing is cluttered for larger numbers of terms Linguistic Inquiry and Word Count • Provide an effective method for studying emotional/cognitive/structural/process components present in individuals’ verbal and written speech • Calculates % of words that match of up to 84 dimensions • Generates an output that is readable by SPSS or Excel LIWC / output variables • Text files, once formatted for entry, are processed for up to 84 output variables, including: – 17 standard linguistic dimensions (e.g., word count, percentage of pronouns, articles) – 25 word categories tapping psychological constructs (e.g., affect, cognition) – 10 dimensions related to "relativity" (time, space, motion) – 19 personal concern categories (e.g., work, home, leisure activities) LIWC / How to… • For best results -> prepare text for analysis (adjust misspellings, inappropriate words, abbreviations) • Adjusting words can be tricky… e.g.: US -> U.S. • Sometimes used to analyze oral conversations/interviews -> transcribe speech to text -> dictionary includes some “nonfluencies” (e.g.: hm, uh, huh, um) • Analyzes data one file at a time • Files: TEXT or ASCII format! Can’t read word document • The longer the document, the better LIWC / dictionaries • Only counts words that are in the dictionaries • default dictionary: Internal Pennebaker Dictionary -> 2300 words • But you can develop your own dictionary! • To create dictionary: choose “load new dictionary” from the “dictionary” menu • Dictionaries have to be plain text files LIWC output with standard linguistic dimensions