abg Decay Theory • Previously looked at kinematics now study dynamics (interesting bit). • QM tunnelling and a decays • Fermi theory of b.
Download ReportTranscript abg Decay Theory • Previously looked at kinematics now study dynamics (interesting bit). • QM tunnelling and a decays • Fermi theory of b.
abg Decay Theory • Previously looked at kinematics now study dynamics (interesting bit). • QM tunnelling and a decays • Fermi theory of b decay and e.c. g decays Tony Weidberg Nuclear Physics Lectures 1 a Decay Theory • Consider 232Th Z=90 R=7.6 fm E=34 MeV E Z1 Z 2 e2 4 0c c R • Energy of a Ea=4.08 MeV • Question: How does the a escape? • Answer: QM tunnelling Tony Weidberg Nuclear Physics Lectures 2 radial wave function in alpha decay iII I iI Exponential decay of y nucleus Tony Weidberg r barrier (negative KE) Nuclear Physics Lectures small flux of real α 3 QM Tunnelling y I e xp(ikx) A e xp( ikx) y II B e xp(Kx ) C e xp( Kx ) y III D e xp(ikx) V k 2mE K 2m (V0 E ) E 0 t • B.C. at x=0 and x=t for Kt>>1 and k~K gives for 1D rectangular barrier thickness t gives T=|D|2=exp(-2Kt) • Integrate over Coulomb barrier from r=R to r=t Tony Weidberg Nuclear Physics Lectures 4 a-decay DEsep≈6MeV per nucleon for heavy nuclei DEbind(42a)=28.3 MeV > 4*6MeV Neutrons Tony Weidberg Protons Alphas Nuclear Physics Lectures 5 2t 2 T exp K (r )dr exp 2M( V(r ) Ea ) dr exp( G ) R 2 2Ze 2 V (r ) 4 0r 2Ze 2 Ea 4 0t 2 MZe2 G 0 1/ 2 t 1/ 2 1 / r 1 / t dr ; r t cos2 dr 2t cos sind R 1/ 2 1 MZe 2 G 0 t1 / 2 sin2 d 0 2 sin d (1/ 2) 0 sin 0 cos 0 0 1/ 2 MZe t t R;cos 0 R / t ; cos 0 0;0 / 2; G 4 0 2 Tony Weidberg Nuclear Physics Lectures 6 Alpha Decay Rates 1/ 2 MZe t G 4 0 • Gamow factor 2 2 Ze 2 t 4 0 Ea 1/ 2 e MZ G 4 0 2 Ea 2 2 • Number of hits, on surface of nucleus radius R ~ v/2R.Decay rate ( 2 Ea / m ) exp(G ) 2R Tony Weidberg Nuclear Physics Lectures 7 Experimental Tests • Predict log decay rate proportional to (Ea)1/2 • Agrees ~ with data for e-e nuclei. • Angular momentum effects: – Additional barrier El l ( l 1)( c )2 2 Mc 2r 2 – Small compared to Coulomb but still generates large extra exponential suppression. Eg l=1, R=15 fm El~0.05 MeV cf for Z-90 Ec~17 MeV. • Spin/parity DJ=L Tony Weidberg parity change=(-)L Nuclear Physics Lectures 8 Experimental Tests Half-life (s) 1018 10-6 4 Tony Weidberg Energy E (MeV) Nuclear Physics Lectures 9 9 Fermi b DecayTheory • Consider simplest case: n decay. • At quark level: du+W followed by decay of virtual W. n pe e ; d ue e d u u n d u d p eW- Tony Weidberg Nuclear Physics Lectures ( e) 10 Fermi Theory • 4 point interaction (low energy approximation). * * * 3 M if G b y e (r )y (r )y p (r )y n (r )d r y e (r ) exp(ik e .r ) ; y (r ) exp(ik .r ) ;q k e k q ~ 1MeV / c R ~ 5fm q.r ~ 1 / 40 exp(iq.r ) 1 M if G b y p* (r )y n (r )d 3r Tony Weidberg Nuclear Physics Lectures 11 Fermi Theory • e distribution determined by phase space (neglect nuclear recoil energy) dN e 4pe2dp e / h3 ;dN 4p 2dp / h3 d2N 4pe2dp e / h3 4p 2dp / h3 p (Ef Ee ) / c ; p / Ef 1 / c d N 2 16 2 6 3 h c 2 pe dp e (Ef Ee ) dE f 2 • Use FGR : phase space & M.E. decay rate Tony Weidberg Nuclear Physics Lectures 12 Kurie Plot I(p ) Ap 2 (Ef Ee ) A(Ef Ee ) Coulomb correction Fermi function K(Z,p) Continuous spectrum neutrino End point gives limit on neutrino mass Tony Weidberg (I(p)/p2K(Z,p))1/2 p 2 Intensity I (p ) Tritium b decay 18 Electron energy (keV) Nuclear Physics Lectures Electron energy (keV) 13 Selection Rules • Fermi Transitions: – e couple to give 0 spin: DS=0 – “Allowed transitions” DL=0 DJ=0. • Gamow-Teller transitions: – e couple to give 1 unit of spin: DS=0 or ± 1. – “Allowed transitions” DL=0 DJ=0 or ± 1. • “Forbidden” transitions: 2 exp(iq.r ) 1 (iq.r ) O(q.r ) ... – Higher order terms correspond to non-zero DL. Therefore suppressed depending on (q.r)2L – Usual QM rules give: J=L+S Tony Weidberg Nuclear Physics Lectures 14 Electron Capture • Can compete with b+ decay. e p n e R M if G b y e (r )y p (r )y n* (r )y* (r )d 3r 0 • For “allowed” transitions. R Mif G by e (0)y (0) y p (r )y n* (r ) d 3r 0 • Only l=0. n=1 largest. y e ( 0) 1 / 2 Zme e 2 40 2 2 3 3/ 2 Zm ee 2 Gb 2 Mif 3 M F L 4 0 2 2 Tony Weidberg e xp(ik .r ) ;y ( r ) L3 / 2 R M F y n* (r )y p (r )d 3r Nuclear Physics Lectures 0 15 Electron Capture (2) • Density of states: dN 4 q 2 3 dN dN dq 3 L ; dq h dE dq dE ; E q c dN 4 q 2 3 3 L dE hc • Fermi’s Golden Rule: w 2 2 dN M dE 2 16 E Zm e e w G 2b M F2 h4c3 4 0 2 2 2 Tony Weidberg 3 Nuclear Physics Lectures 16 Anti-neutrino Discovery • Inverse Beta Decay n pe e ; ep ne • Same matrix elements. 2 2 6 M G b MF L 2 • Fermi Golden Rule: 2 2 dN w M dE 2 2 2 dN w G b MF dE Tony Weidberg Nuclear Physics Lectures 17 Anti-neutrino Discovery (2) • Phase space factor dN 4p 2L3 dp dE h 3 dE • Neglect nuclear recoil. 2 2 2 2 4 dp E p c m c ; E / pc 2 • Combine with FGR dE 2 2 2 4pe Ee w Gb M F 3 2 3 hc L ; R F F c/ L 3 3 16 peEe 2 G 2b MF Tony Weidberg 4 3 h c Nuclear Physics Lectures 18 The Experiment • For E~ 1MeV ~10-47 cm2 • Pauli prediction and Cowan and Reines. ep ne e e 2g (prompt ) n Cd gs(9MeV, delayed) Liquid Scint. 1 GW Nuclear Reactor Tony Weidberg H20+CdCl2 Shielding Nuclear Physics Lectures PMTs 19 Parity Definitions r r ; P[y (r )] y (r ) P [y (r )] y (r ) 2 P (v ) v ; P (v1.v2 ) v1.v2 Lrxp P( L) L • Eigenvalues of parity are +/- 1. • If parity is conserved: [H,P]=0 eigenstates of H are eigenstates of parity. If parity violated can have states with mixed parity. • If Parity is conserved result of an experiment should be unchanged by parity operation. Tony Weidberg Nuclear Physics Lectures 20 Parity Conservation • If parity is conserved for reaction a+b c+d. ha hb ( 1)L IN hc hd ( 1)L FINAL • Nb absolute parity of states that can be produced from vacuum (e.g. photons) can be defined. For other particles we can define relative parity. e.g. define hp=+1, hn=+1 then can determine parity of other nuclei. • If parity is conserved <pseudo-scalar>=0 (see next transparency). Tony Weidberg Nuclear Physics Lectures 21 O p y O py d r * y P O py d r 3 * 2 3 O p y PO p Py d r * 3 O p (h p ) y Opy d r 2 * 3 O p y O py d r * 3 <Op> = 0 QED Tony Weidberg Nuclear Physics Lectures 22 Is Parity Conserved In Nature? • Feynman’s bet. • Yes in electromagnetic and strong interactions. • Big surprise was that parity is violated in weak interactions. Tony Weidberg Nuclear Physics Lectures 23 Mme. Wu’s Cool Experiment 60 Co(J 5)60Ni* (J 4) e e ; 60 Ni* Ni g 60 • Align spins of 60Co with magnetic field. • Adiabatic demagnetisation to get T ~ 10 mK • Measure angular distribution of electrons and photons relative to B field. • Clear forward-backward asymmetry Parity violation. Tony Weidberg Nuclear Physics Lectures 24 The Experiment Tony Weidberg Nuclear Physics Lectures 25 Improved Experiment q is angle wrt spin of 60Co. Tony Weidberg Nuclear Physics Lectures 26 g decays • When do they occur? – Nuclei have excited states cf atoms. Don’t worry about details E,JP (need shell model to understand). – EM interaction << strong interaction – Low energy states E < 6 MeV above ground state can’t decay by strong interaction EM. • Important in cascade decays a and b. • Practical consequences – Fission. Significant energy released in g decays. – Radiotherapy: g from Co60 decays. – Medical imaging eg Tc. Tony Weidberg Nuclear Physics Lectures 27 Energy Levels for Mo and Tc b decay leaves Tc in excited state. Useful for medical imaging Tony Weidberg Nuclear Physics Lectures 28 g Decay Theory (Beyond Syllabus) • Most common decay mode for nuclear excited states (below threshold for break-up) is g decay. • Lifetimes vary from years to 10-16s. nb long lifetimes can easily be observed unlike in atomic. Why? • Angular momentum conservation in g decays. – intrinsic spin of g is1 and orbital angular momentum integer J is integer. – Only integer changes in J of nucleus allowed. – QM addition of J: Ji J f J Ji J f – Absolutely forbidden (why?): 00 Tony Weidberg Nuclear Physics Lectures 29 g Decays • Electric transitions E E0 exp[i ( k .r t )] 2 3 E E0 (1 ik .r ( k .r ) O( k .r ) • Typically k~1 MeV/c r~ 1 fm k.r~1/200 use multipole expansion. Lowest term is electric dipole transitions, L=1. 2 2 * 3 H y f er y i d r • Parity change for electric dipole. Tony Weidberg Nuclear Physics Lectures 30 Forbidden Transitions • If electric dipole transitions forbidden by angular momentum or parity can have “forbidden” transitions, eg electric quadropole. • Rate suppressed cf dipole by ~ (k.r)2 • Magnetic transitions also possible: • Classically: E=-m.B • M1 transition rate smaller than E1 by ~ 10-3. • Higher order magnetic transitions also possible. • Parity selection rules: – Electric: D=(-1)L – Magnetic: D=(-1)L+1 Tony Weidberg Nuclear Physics Lectures 31 Internal Conversion • 00 absolutely forbidden: • What happens to a 0+ excited state? • Decays by either: – Internal conversion: nucleus emits a virtual photon which kicks out an atomic electron. Requires overlap of the electron with the nucleus only l=0. Probability of electron overlap with nucleus increases as Z3. For high Z can compete with other g decays. – Internal pair conversion: nucleus emits a virtual photon which converts to e+e- pair. Tony Weidberg Nuclear Physics Lectures 32