Assignment and prediction April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Protein Secondary Structures.
Download ReportTranscript Assignment and prediction April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Protein Secondary Structures.
Assignment and prediction April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Protein Secondary Structures ß-strand Helix Bend April 26, 2004 Claus Lundegaard Turn CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Secondary Structure Elements • • • • • Classification of protein structures Definition of loops/core Use in fold recognition methods Improvements of alignments Definition of domain boundaries April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Use of secondary structure • Defining features – Dihedral angles – Hydrogen bonds – Geometry • Assigned manually by crystallographers or • Automatic – DSSP (Kabsch & Sander,1983) – STRIDE (Frishman & Argos, 1995) – Continuum (Andersen et al., 2002) April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Classification of secondary structure From http://www.imb-jena.de phi psi omega April 26, 2004 - dihedral angle about the N-Calpha bond dihedral angle about the Calpha-C bond dihedral angle about the C-N (peptide) bond Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Dihedral Angles phi(deg) psi(deg) H-bond pattern -----------------------------------------------------------------right-handed alpha-helix -57.8 -47.0 i+4 pi-helix -57.1 -69.7 i+5 3-10 helix -74.0 -4.0 i+3 (omega is 180 deg in all cases) ----------------------------------------------------------------From http://www.imb-jena.de April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Helices phi(deg) psi(deg) omega (deg) -----------------------------------------------------------------beta strand -120 120 180 ----------------------------------------------------------------- Hydrogen bond patterns in beta sheets. Here a four-stranded beta sheet is drawn schematically which contains three antiparallel and one parallel strand. Hydrogen bonds are indicated with red lines (antiparallel strands) and green lines (parallel strands) connecting the hydrogen and receptor oxygen. From http://broccoli.mfn.ki.se/pps_course_96/ April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Beta Strands ß-strand Helix Bend April 26, 2004 Claus Lundegaard Turn CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Secondary Structure Elements * * * * * * * April 26, 2004 H = alpha helix B = residue in isolated beta-bridge E = extended strand, participates in beta ladder G = 3-helix (3/10 helix) I = 5 helix (pi helix) T = hydrogen bonded turn S = bend Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Secondary Structure Type Descriptions • • • DSSP ( http://www.cmbi.kun.nl/gv/dssp/ ) Continuum ( http://cubic.bioc.columbia.edu/services/DSSPcont/ ) STRIDE ( http://www.hgmp.mrc.ac.uk/Registered/Option/stride.html ) # RESIDUE 1 4 A 2 5 A 3 6 A 4 7 A 5 8 A 6 9 A 7 10 A 8 11 A 9 12 A 10 13 A 11 14 A 12 15 A 13 16 A 14 17 A 15 18 A 16 19 A 17 20 A 18 21 A 19 22 A 20 23 A 21 24 A 22 25 A 23 26 A 24 27 A 25 28 A 26 29 A 27 30 A April 26, 2004 AA E H V I I Q A E F Y L N P D Q S G E F M F D F D G D E STRUCTURE BP1 BP2 0 0 0 0 0 0 E -A 23 0A E -A 22 0A E -A 21 0A E +A 20 0A E +A 19 0A E -A 18 0A E -A 17 0A E >> -A 16 0A T 45S+ 0 0 T 45S+ 0 0 T 45S0 0 T <5 + 0 0 E < +A 11 0A E -A 10 0A E -A 9 0A E +A 8 0A E -AB 7 30A E -AB 6 29A E -AB 5 27A E > S-AB 4 26A T 3 S0 0 T 3 S+ 0 0 E < S-B 23 0A E -B 22 0A ACC 205 127 66 106 74 86 18 63 31 36 24 54 114 66 132 44 28 14 3 0 45 6 76 74 20 114 8 N-H-->O O-->H-N N-H-->O O-->H-N 0, 0.0 2,-0.3 0, 0.0 0, 0.0 2, 0.0 2,-0.4 21, 0.0 21, 0.0 -2,-0.3 21,-2.6 2, 0.0 2,-0.5 -2,-0.4 2,-0.4 19,-0.2 19,-0.2 17,-2.8 17,-2.8 -2,-0.5 2,-0.9 -2,-0.4 2,-0.4 15,-0.2 15,-0.2 13,-2.5 13,-2.5 -2,-0.9 2,-0.3 -2,-0.4 2,-0.3 11,-0.2 11,-0.2 9,-1.5 9,-1.8 -2,-0.3 2,-0.4 -2,-0.3 2,-0.4 7,-0.2 7,-0.2 5,-3.2 4,-1.7 -2,-0.4 5,-1.3 -2,-0.4 -2, 0.0 2,-0.2 0, 0.0 0, 0.0 -1,-0.2 0, 0.0 -2, 0.0 2,-0.1 -2,-0.2 1,-0.1 3,-0.1 -4,-1.7 2,-0.3 1,-0.2 -3,-0.2 -5,-1.3 -5,-3.2 2, 0.0 2,-0.3 -2,-0.3 2,-0.3 -7,-0.2 -7,-0.2 -9,-1.8 -9,-1.5 -2,-0.3 2,-0.4 12,-0.4 12,-2.3 -2,-0.3 2,-0.3 -13,-2.5 -13,-2.5 -2,-0.4 2,-0.4 8,-2.4 7,-2.9 -2,-0.3 8,-1.0 -17,-2.8 -17,-2.8 -2,-0.4 2,-0.5 3,-3.5 3,-2.1 -2,-0.4 -19,-0.2 -21,-2.6 -20,-0.1 -2,-0.5 -1,-0.1 -22,-0.3 2,-0.4 1,-0.2 -1,-0.3 -3,-2.1 -3,-3.5 109, 0.0 2,-0.3 -2,-0.4 -5,-0.3 -5,-0.2 3,-0.1 TCO 0.000 -0.987 -0.995 -0.976 -0.972 -0.910 -0.852 -0.933 -0.967 -0.994 -0.929 -0.884 -0.963 0.752 0.936 -0.877 -0.893 -0.979 -0.982 -0.983 -0.934 -0.948 -0.947 0.904 0.291 -0.822 -0.525 Claus Lundegaard KAPPA ALPHA PHI PSI 360.0 360.0 360.0 113.5 360.0-152.8-149.1 154.0 4.6-170.2-134.3 126.3 13.9-170.8-114.8 126.6 20.8-158.4-125.4 129.1 29.5-170.4 -98.9 106.4 11.5 172.8-108.1 141.7 4.4 175.4-139.1 156.9 13.3-160.9-160.6 151.3 16.5-156.0-136.8 132.1 11.7-122.6-120.0 133.5 84.3 9.0-113.8 150.9 125.4 60.5 -86.5 8.5 89.3-146.2 -64.6 -23.0 51.1 134.1 52.9 50.0 28.9 174.9-124.8 156.8 15.9-146.5-151.0-178.9 5.0-169.6-158.6 146.0 27.8 149.2-139.1 120.3 39.7-127.8-152.1 161.6 23.9-164.1-112.5 137.7 6.9-165.0-123.7 138.3 78.4 -27.2-127.3 111.5 128.9 -46.6 50.4 45.0 118.8 109.3 84.7 -11.1 71.8-114.7-103.1 140.3 24.9-177.7 -74.1 127.5 X-CA 5.7 9.4 11.5 15.0 16.6 19.9 20.7 23.4 24.4 27.2 28.0 29.7 32.0 33.0 33.3 32.1 29.6 28.0 26.5 24.5 21.7 18.9 16.4 13.4 15.4 18.4 21.8 Y-CA 42.2 41.3 38.4 37.6 34.9 33.0 31.8 29.4 27.6 25.3 24.8 22.0 21.6 25.2 24.2 27.7 28.7 31.5 32.2 35.4 37.0 38.9 41.3 42.1 41.4 43.4 41.8 Z-CA 25.1 24.7 23.5 24.5 22.4 23.0 19.5 18.4 15.3 14.1 10.4 8.6 6.8 7.6 11.2 12.3 14.8 16.7 20.1 20.6 22.6 20.8 22.3 20.2 17.0 18.1 19.1 CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Automatic assignment programs • What to predict? Q3 into groups – All 8 types or pool types * * * * * * * * H = a helix B = residue in isolated b-bridge E = extended strand, participates in b ladder G = 3-helix (3/10 helix) I = 5 helix (p helix) T = hydrogen bonded turn S = bend C/.= random coil H E C Straight CASPHEC April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Secondary Structure Prediction • Simple alignments • Align to a close homolog for which the structure has been experimentally solved. • Heuristic Methods (e.g., Chou-Fasman, 1974) • Apply scores for each amino acid an sum up over a window. • Neural Networks (different inputs) • • • • April 26, 2004 Raw Sequence (late 80’s) Blosum matrix (e.g., PhD, early 90’s) Position specific alignment profiles (e.g., PsiPred, late 90’s) Multiple networks balloting, probability conversion, output expansion (Petersen et al., 2000). Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Secondary Structure Prediction 1974 Chou & Fasman 1978 Garnier 1987 Zvelebil 1988 Quian & Sejnowski 1993 Rost & Sander 1997 Frishman & Argos 1999 Cuff & Barton 1999 Jones 2000 Petersen et al. April 26, 2004 Claus Lundegaard ~50-53% 63% 66% 64.3% 70.8-72.0% <75% 72.9% 76.5% 77.9% CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Improvement of accuracy • Solved structure of a homolog to query is needed • Homologous proteins have ~88% identical (3 state) secondary structure • If no close homologue can be identified alignments will give almost random results April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Simple Alignments Claus Lundegaard April 26, 2004 CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Amino acid preferences in aHelix Claus Lundegaard April 26, 2004 CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Amino acid preferences in bStrand Claus Lundegaard April 26, 2004 CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Amino acid preferences in coil Name Ala Arg Asp Asn Cys Glu Gln Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val April 26, 2004 P(a) 142 98 101 67 70 151 111 57 100 108 121 114 145 113 57 77 83 108 69 106 P(b) 83 93 54 89 119 37 110 75 87 160 130 74 105 138 55 75 119 137 147 170 P(turn) 66 95 146 156 119 74 98 156 95 47 59 101 60 60 152 143 96 96 114 50 f(i) 0.06 0.070 0.147 0.161 0.149 0.056 0.074 0.102 0.140 0.043 0.061 0.055 0.068 0.059 0.102 0.120 0.086 0.077 0.082 0.062 f(i+1) 0.076 0.106 0.110 0.083 0.050 0.060 0.098 0.085 0.047 0.034 0.025 0.115 0.082 0.041 0.301 0.139 0.108 0.013 0.065 0.048 Claus Lundegaard f(i+2) 0.035 0.099 0.179 0.191 0.117 0.077 0.037 0.190 0.093 0.013 0.036 0.072 0.014 0.065 0.034 0.125 0.065 0.064 0.114 0.028 f(i+3) 0.058 0.085 0.081 0.091 0.128 0.064 0.098 0.152 0.054 0.056 0.070 0.095 0.055 0.065 0.068 0.106 0.079 0.167 0.125 0.053 CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Chou-Fasman 1. Assign all of the residues in the peptide the appropriate set of parameters. 2. Scan through the peptide and identify regions where 4 out of 6 contiguous residues have P(a-helix) > 100. That region is declared an alpha-helix. Extend the helix in both directions until a set of four contiguous residues that have an average P(a-helix) < 100 is reached. That is declared the end of the helix. If the segment defined by this procedure is longer than 5 residues and the average P(a-helix) > P(b-sheet) for that segment, the segment can be assigned as a helix. 3. Repeat this procedure to locate all of the helical regions in the sequence. 4. Scan through the peptide and identify a region where 3 out of 5 of the residues have a value of P(b-sheet) > 100. That region is declared as a beta-sheet. Extend the sheet in both directions until a set of four contiguous residues that have an average P(b-sheet) < 100 is reached. That is declared the end of the beta-sheet. Any segment of the region located by this procedure is assigned as a beta-sheet if the average P(b-sheet) > 105 and the average P(b-sheet) > P(a-helix) for that region. 5. Any region containing overlapping alpha-helical and beta-sheet assignments are taken to be helical if the average P(a-helix) > P(b-sheet) for that region. It is a beta sheet if the average P(b-sheet) > P(a-helix) for that region. 6. To identify a bend at residue number j, calculate the following value: p(t) = f(j)f(j+1)f(j+2)f(j+3) where the f(j+1) value for the j+1 residue is used, the f(j+2) value for the j+2 residue is used and the f(j+3) value for the j+3 residue is used. If: (1) p(t) > 0.000075; (2) the average value for P(turn) > 1.00 in the tetra-peptide; and (3) the averages for the tetra-peptide obey the inequality P(a-helix) < P(turn) > P(b-sheet), then a beta-turn is predicted at that location. April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Chou-Fasman • General applicable • Works for sequences with no solved homologs • But, Low Accuracy April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Chou-Fasman • Benefits – General applicable – Can capture higher order correlations – Inputs other than sequence information • Drawbacks – Needs many data (different solved structures). However, theese does exist today (nearly 2000 solved structures with low sequence identity. – Complex methods with several pitfalls. April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Neural Networks Weights Input Layer IK EE H VI HE C IQ AE Hidden Layer Window IKEEHVIIQAEFYLNPDQSGEF….. April 26, 2004 Claus Lundegaard Output Layer CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Architecture Inp Neuron 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 AAcid April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Sparse encoding 0 0 0 1 0 0 0 0 0 0 0 0 0 IQ AE IK EE HV I Claus Lundegaard April 26, 2004 CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Input Layer 0 0 0 0 0 0 0 A R N D C Q E G H I L K M F P S T W Y V A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 April 26, 2004 N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 Claus Lundegaard S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 * -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU BLOSUM 62 CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Input Layer -1 0 IK EE HV I 0 2 -4 2 5 -2 0 -3 IQ AE -3 1 -2 -3 -1 0 -1 -3 -2 -2 April 26, 2004 Claus Lundegaard Weights Input Layer HE CH E CH EC Window HE C Hidden Layer IKEEHVIIQAEFYLNPDQSGEF….. April 26, 2004 Claus Lundegaard Output Layer CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Secondary networks (Structure-to-Structure) • Combine neural networks with sequence profiles – 6-8 Percentage points increase in prediction accuracy over standard neural networks • Use second layer “Structure to structure” network to filter predictions • Jury of predictors • Set up as mail server April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU PHD method (Rost and Sander) • Use alignments from iterative sequence searches (PSI-Blast) as input to a neural network • Better predictions due to better sequence profiles • Available as stand alone program and via the web April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU PSI-Pred (Jones, DT) (BLAST profiles) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 April 26, 2004 I K E E H V I I Q A E F Y L N P D A -2 -1 5 -4 -4 -3 0 -3 -2 2 -1 -3 3 -1 -1 -2 -3 R -4 -1 -3 -3 2 0 -2 0 -3 -4 3 -5 -5 -3 -4 4 -2 N -5 -2 -3 2 1 -4 -4 -5 -2 -4 1 -5 -5 -4 4 -4 1 D -5 -2 -3 5 1 -5 1 -5 -3 -3 1 -5 -6 -2 1 -4 5 C -2 -3 -3 -6 -5 -4 -4 -4 -5 2 -1 -4 3 1 5 -5 -6 Q -4 -1 3 1 1 -4 -2 -2 4 -3 0 -4 -4 5 -3 0 -2 E -4 3 1 5 -2 -2 -4 -5 -1 -1 1 -4 -5 1 -4 -3 2 G -5 -3 -2 -4 -4 -3 -4 -6 3 -4 -4 -1 -2 -1 2 3 2 H -5 -2 -3 -3 9 -5 -5 1 5 -2 -3 -1 -1 -1 -4 2 -1 I 6 -2 -3 -6 -5 1 1 2 -5 1 -1 1 0 -1 -4 -5 -2 L 0 -3 -3 -6 -2 -2 0 4 -3 -1 -3 1 -4 1 -4 -4 -2 Claus Lundegaard K -4 4 -2 -2 -3 1 -2 -4 -3 -4 0 -5 -5 -3 -3 0 -3 M 0 -2 -2 -5 -4 0 0 -1 -4 -3 3 2 -3 -3 -2 -4 -5 F -2 -4 -4 -6 -4 1 2 0 -2 -4 -5 5 3 1 -4 -3 -4 P -4 -3 -3 -4 -5 -4 -5 -5 -4 1 4 -1 -5 -5 -5 0 -5 S -4 1 -1 -2 -3 -3 1 -2 2 2 -1 -4 -2 -1 2 1 -1 T -2 1 -2 -3 -4 3 -1 0 -1 3 -3 -4 -2 -1 0 -2 2 W -4 -4 -4 -6 -5 -5 -5 -3 -4 -5 -6 -3 -2 -2 -5 -1 -6 Y -3 -3 -3 -5 1 -3 -3 5 2 -1 -3 5 7 3 0 5 -3 V 4 2 1 -5 -5 5 4 -1 -2 1 -1 2 1 -2 0 -3 -4 CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Position specific scoring matrices • CASP – Critical Assessment of Structure Predictions – Sequences from about-to-be-solved-structures are given to groups who submit their predictions before the structure is published • EVA – Newly solved structures are send to prediction servers. April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Benchmarking secondary structure predictions • • • • • • PROFphd 77.0% PSIPRED 76.8% SAM-T99sec 76.1% SSpro 76.0% Jpred2 75.5% PHD 71.7% – Cubic.columbia.edu/eva April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU EVA results (Rost et al., 2001) • Sequence-to-structure – Window sizes 15,17,19 and 21 – Hidden units50 and 75 – 10-fold cross validation => 80 predictions • Structure-to-structure – Window size 17 – Hidden units40 – 10-fold cross validation => 800 predictions April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Several different architectures • Confidence of a per residue prediction – P(Highest) – P(second highest) – H: 0.80 E: 0.05 C:0.15 => conf.=0.65 • Mean per chain confidence for all 800 predictions – Calculate Mean and Standard deviation – Averaging of per chain predictions with Z >=2 April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Balloting procedure Helix Strand Coil activities (output) activities (output) probabilities! (calculated) Coil conversion 0.05 0.10 0.15 . . . 1.0 April 26, 2004 0.05 0.99 0.1 0.15 0.9 0.83 0.75 Claus Lundegaard … 1.0 CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Activities to probabilities • Database of links – http://mmtsb.scripps.edu/cgibin/renderrelres?protmodel • ProfPHD – http://cubic.bioc.columbia.edu/ • PSIPRED – http://bioinf.cs.ucl.ac.uk/psipred/ • JPred – www.compbio.dundee.ac.uk/Software/JPred/jpred. html April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Links to servers • If you need a secondary structure prediction use one of the newer ones such as – ProfPHD, – PSIPRED, and – JPred • And not one of the older ones such as – Chou-Fasman, and – Garnier April 26, 2004 Claus Lundegaard CENTER FOR BIOLOGICAL SEQUENCE ANALYSIS TECHNICAL UNIVERSITY OF DENMARK DTU Practical Conclusion