CSCE430/830 Computer Architecture Instruction-level parallelism: Tomasulo Lecturer: Prof. Hong Jiang Courtesy of Yifeng Zhu (U.
Download ReportTranscript CSCE430/830 Computer Architecture Instruction-level parallelism: Tomasulo Lecturer: Prof. Hong Jiang Courtesy of Yifeng Zhu (U.
CSCE430/830 Computer Architecture Instruction-level parallelism: Tomasulo Lecturer: Prof. Hong Jiang Courtesy of Yifeng Zhu (U. Maine) Fall, 2006 CSCE430/830 Portions of these slides are derived from: Dave Patterson © UCB ILP: Tomasulo Another Dynamic Algorithm: Tomasulo’s Algorithm • For IBM 360/91 (before caches!) • Goal: High Performance without special compilers • Small number of floating point registers (4 in 360) prevented interesting compiler scheduling of operations – This led Tomasulo to try to figure out how to get more effective registers — renaming in hardware! • Why Study 1966 Computer? • The descendants of this have flourished! – Alpha 21264, HP 8000, MIPS 10000, Pentium III, PowerPC 604, … CSCE430/830 ILP: Tomasulo Tomasulo’s Algorithm • Tracks when operands for instructions are available. – Minimizes RAW hazards. – Introduces register renaming to minimize WAW and WAR hazards. • Supports the overlapped execution of multiple iterations of a loop. CSCE430/830 ILP: Tomasulo Avoiding Hazards • RAW – Execute an instruction only when its operands are available. • WAW and WAR – Register renaming CSCE430/830 ILP: Tomasulo Register Renaming (Example) • Eliminates WAR and WAW hazards by renaming all destination registers. • Can be done by compiler DIV.D ADD.D S.D SUB.D MUL.D F0, F2, F4 F6, F0, F8 F6, 0(R1) F8, F10, F14 F6, F10, F8 Antidependence S, T: temporary registers Output dependence DIV.D ADD.D S.D SUB.D MUL.D CSCE430/830 F0, F2, F4 S, F0, F8 S, 0(R1) T, F10, F14 F6, F10, T ILP: Tomasulo Tomasulo’s Algorithm • Register renaming is provided by the reservation stations, which buffer the operands of instructions waiting to issue, and by the issue logic. • A reservation station fetches and buffers an operand as soon as it is available, eliminating the need to get the operand from a register. CSCE430/830 ILP: Tomasulo Tomasulo Organization From Mem FP Op Queue FP Registers Load Buffers Load1 Load2 Load3 Load4 Load5 Load6 Store Buffers Add1 Add2 Add3 Mult1 Mult2 FP adders Reservation Stations To Mem FP multipliers Common Data Bus (CDB) CSCE430/830 Normal data bus: data + destination Common data bus: data + source ILP: Tomasulo Tomasulo Algorithm: A Decentralized One • Control & buffers distributed with Function Units (FU) – FU buffers called “reservation stations”; have pending operands • Registers in instructions replaced by values or pointers to reservation stations(RS); – form of register renaming ; – avoids WAR, WAW hazards – more reservation stations than registers, so can do optimizations compilers can’t • Results to FU from RS, not through registers, over Common Data Bus that broadcasts results to all FUs • Loads and Stores treated as FUs with RSs as well • Integer instructions can go past branches, allowing FP ops beyond basic block in FP queue CSCE430/830 ILP: Tomasulo Three Stages of Tomasulo Algorithm 1. Issue—get instruction from FP Op Queue If reservation station free (no structural hazard), control issues instr & sends operands (renames registers). 2. Execute—operate on operands (EX) When both source operands are ready then execute; if not ready, watch Common Data Bus for result 3. Write result—finish execution (WB) Write on Common Data Bus to all awaiting units; mark reservation station available • Normal data bus: data + destination (“go to” bus) • Common data bus: data + source (“come from” bus) – 64 bits of data + 4 bits of Functional Unit source address – Write if matches expected Functional Unit (produces result) – Does the broadcast • Example speed: 3 clocks for Fl .pt. +,-; 10 for * ; 40 clks for / CSCE430/830 ILP: Tomasulo Reservation Station Components Op: Operation to perform in the unit (e.g., + or –) Vj, Vk: Value of Source operands – Store buffers has V field, result to be stored Qj, Qk: Reservation stations producing source registers (value to be written) – Note: Qj,Qk=0 => ready – Store buffers only have Qi for RS producing result Busy: Indicates reservation station or FU is busy Register result status—Indicates which functional unit will write each register, if one exists. Blank when no pending instructions that will write that register. CSCE430/830 ILP: Tomasulo Tomasulo Example Instruction stream Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result Load1 Load2 Load3 Register result status: Clock 0 No No No 3 Load/Buffers Reservation Stations: Time Name Busy Add1 No Add2 No FU count Add3 No down Mult1 No Mult2 No Busy Address Op S1 Vj S2 Vk RS Qj RS Qk 3 FP Adder R.S. 2 FP Mult R.S. F0 F2 F4 F6 F8 F10 F12 ... F30 FU Clock cycle counter CSCE430/830 ILP: Tomasulo Tomasulo Example Cycle 1 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 Reservation Stations: Time Name Busy Add1 No Add2 No Add3 No Mult1 No Mult2 No Register result status: Clock 1 CSCE430/830 FU Busy Address Load1 Load2 Load3 Op S1 Vj S2 Vk RS Qj RS Qk F0 F2 F4 F6 F8 Yes No No 34+R2 F10 F12 ... F30 Load1 ILP: Tomasulo Tomasulo Example Cycle 2 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 Reservation Stations: Time Name Busy Add1 No Add2 No Add3 No Mult1 No Mult2 No Register result status: Clock 2 FU Busy Address Load1 Load2 Load3 Op S1 Vj S2 Vk RS Qj RS Qk F0 F2 F4 F6 F8 Load2 Yes Yes No 34+R2 45+R3 F10 F12 ... F30 Load1 Note: Can have multiple loads outstanding CSCE430/830 ILP: Tomasulo Tomasulo Example Cycle 3 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 Reservation Stations: Time Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes MULTD Mult2 No Register result status: Clock 3 FU F0 Busy Address 3 S1 Vj Load1 Load2 Load3 S2 Vk RS Qj Yes Yes No 34+R2 45+R3 F10 F12 RS Qk R(F4) Load2 F2 Mult1 Load2 F4 F6 F8 ... F30 Load1 • Note: registers names are removed (“renamed”) in Reservation Stations; MULT issued ILP: Tomasulo CSCE430/830 • Load1 completing; what is waiting for Load1? Tomasulo Example Cycle 4 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 Reservation Stations: Busy Address 3 4 4 Load1 Load2 Load3 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 No Yes No 45+R3 F10 F12 Time Name Busy Op Add1 Yes SUBD M(A1) Load2 Add2 No Add3 No Mult1 Yes MULTD R(F4) Load2 Mult2 No Register result status: Clock 4 FU F0 Mult1 Load2 ... F30 M(A1) Add1 • Load2 completing; what is waiting for Load2? CSCE430/830 ILP: Tomasulo Tomasulo Example Cycle 5 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op 2 Add1 Yes SUBD M(A1) M(A2) Add2 No Add3 No 10 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 5 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 M(A1) Add1 Mult2 • Timer starts down for Add1, Mult1 CSCE430/830 ILP: Tomasulo Tomasulo Example Cycle 6 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op 1 Add1 Yes SUBD M(A1) M(A2) Add2 Yes ADDD M(A2) Add1 Add3 No 9 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 6 FU F0 Mult1 M(A2) Add2 No No No F10 F12 ... F30 Add1 Mult2 • Issue ADDD here despite name dependency on F6? CSCE430/830 ILP: Tomasulo Tomasulo Example Cycle 7 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: 3 4 Busy Address 4 5 Load1 Load2 Load3 7 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op 0 Add1 Yes SUBD M(A1) M(A2) Add2 Yes ADDD M(A2) Add1 Add3 No 8 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 7 FU F0 No No No Mult1 M(A2) Add2 F10 F12 ... F30 Add1 Mult2 • Add1 (SUBD) completing; what is waiting for it? CSCE430/830 ILP: Tomasulo Tomasulo Example Cycle 8 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 7 8 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No 2 Add2 Yes ADDD (M-M) M(A2) Add3 No 7 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 8 CSCE430/830 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 Add2 (M-M) Mult2 ILP: Tomasulo Tomasulo Example Cycle 9 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 7 8 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No 1 Add2 Yes ADDD (M-M) M(A2) Add3 No 6 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 9 CSCE430/830 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 Add2 (M-M) Mult2 ILP: Tomasulo Tomasulo Example Cycle 10 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: 3 4 4 5 7 8 Busy Address Load1 Load2 Load3 10 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No 0 Add2 Yes ADDD (M-M) M(A2) Add3 No 5 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 10 FU F0 No No No Mult1 M(A2) F10 F12 ... F30 Add2 (M-M) Mult2 • Add2 (ADDD) completing; what is waiting for it? CSCE430/830 ILP: Tomasulo Tomasulo Example Cycle 11 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 7 8 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No 4 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 11 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 • Write result of ADDD here? • All quick instructions complete in this cycle! CSCE430/830 ILP: Tomasulo Tomasulo Example Cycle 12 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 7 8 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No 3 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 12 CSCE430/830 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 ILP: Tomasulo Tomasulo Example Cycle 13 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 7 8 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No 2 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 13 CSCE430/830 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 ILP: Tomasulo Tomasulo Example Cycle 14 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 4 5 Load1 Load2 Load3 7 8 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No 1 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 14 CSCE430/830 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 ILP: Tomasulo Tomasulo Example Cycle 15 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: Busy Address 3 4 15 7 4 5 Load1 Load2 Load3 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 8 Time Name Busy Op Add1 No Add2 No Add3 No 0 Mult1 Yes MULTD M(A2) R(F4) Mult2 Yes DIVD M(A1) Mult1 Register result status: Clock 15 FU F0 Mult1 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 • Mult1 (MULTD) completing; what is waiting for it? CSCE430/830 ILP: Tomasulo Tomasulo Example Cycle 16 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: 3 4 15 7 4 5 16 8 Load1 Load2 Load3 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No Mult1 No 40 Mult2 Yes DIVD M*F4 M(A1) Register result status: Clock 16 FU F0 Busy Address M*F4 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 • Just waiting for Mult2 (DIVD) to complete CSCE430/830 ILP: Tomasulo Faster than light computation (skip a couple of cycles) CSCE430/830 ILP: Tomasulo Tomasulo Example Cycle 55 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: 3 4 15 7 4 5 16 8 Load1 Load2 Load3 10 11 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No Mult1 No 1 Mult2 Yes DIVD M*F4 M(A1) Register result status: Clock 55 CSCE430/830 FU F0 Busy Address M*F4 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Mult2 ILP: Tomasulo Tomasulo Example Cycle 56 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: 3 4 15 7 56 10 4 5 16 8 Load1 Load2 Load3 S1 Vj S2 Vk RS Qj RS Qk 56 FU F0 F2 F4 F6 F8 M*F4 M(A2) No No No 11 Time Name Busy Op Add1 No Add2 No Add3 No Mult1 No 0 Mult2 Yes DIVD M*F4 M(A1) Register result status: Clock Busy Address F10 F12 ... F30 (M-M+M)(M-M) Mult2 • Mult2 (DIVD) is completing; what is waiting for it? CSCE430/830 ILP: Tomasulo Tomasulo Example Cycle 57 Instruction status: Instruction LD F6 LD F2 MULTD F0 SUBD F8 DIVD F10 ADDD F6 j 34+ 45+ F2 F6 F0 F8 k R2 R3 F4 F2 F6 F2 Exec Write Issue Comp Result 1 2 3 4 5 6 Reservation Stations: 3 4 15 7 56 10 4 5 16 8 57 11 Load1 Load2 Load3 S1 Vj S2 Vk RS Qj RS Qk F2 F4 F6 F8 Time Name Busy Op Add1 No Add2 No Add3 No Mult1 No Mult2 Yes DIVD M*F4 M(A1) Register result status: Clock 56 FU F0 Busy Address M*F4 M(A2) No No No F10 F12 ... F30 (M-M+M)(M-M) Result • Once again: In-order issue, out-of-order execution and out-of-order completion. ILP: Tomasulo CSCE430/830 Tomasulo Drawbacks • Complexity – delays of 360/91, MIPS 10000, Alpha 21264, IBM PPC 620 in CA:AQA 2/e, but not in silicon! • Many associative stores (CDB) at high speed • Performance limited by Common Data Bus – Each CDB must go to multiple functional units high capacitance, high wiring density – Number of functional units that can complete per cycle limited to one! » Multiple CDBs more FU logic for parallel assoc stores • Non-precise interrupts! – We will address this later CSCE430/830 ILP: Tomasulo Avoiding Hazards • RAW – Execute an instruction only when its operands are available. • WAW and WAR – Register renaming CSCE430/830 ILP: Tomasulo Tomasulo Organization From Mem FP Op Queue FP Registers Load Buffers Load1 Load2 Load3 Load4 Load5 Load6 Store Buffers Add1 Add2 Add3 Mult1 Mult2 FP adders Reservation Stations To Mem FP multipliers Common Data Bus (CDB) CSCE430/830 ILP: Tomasulo Three Stages of Tomasulo Algorithm 1. Issue—get instruction from FP Op Queue If reservation station free (no structural hazard), control issues instr & sends operands (renames registers). 2. Execute—operate on operands (EX) When both operands ready then execute; if not ready, watch Common Data Bus for result 3. Write result—finish execution (WB) Write on Common Data Bus to all awaiting units; mark reservation station available • Normal data bus: data + destination (“go to” bus) • Common data bus: data + source (“come from” bus) – 64 bits of data + 4 bits of Functional Unit source address – Write if matches expected Functional Unit (produces result) – Does the broadcast • Example speed: 3 clocks for Fl .pt. +,-; 10 for * ; 40 clks for / CSCE430/830 ILP: Tomasulo Reservation Station Components Op: Operation to perform in the unit (e.g., + or –) Vj, Vk: Value of Source operands – Store buffers has V field, result to be stored Qj, Qk: Reservation stations producing source registers (value to be written) – Note: Qj,Qk=0 => ready – Store buffers only have Qi for RS producing result Busy: Indicates reservation station or FU is busy Register result status—Indicates which functional unit will write each register, if one exists. Blank when no pending instructions that will write that register. CSCE430/830 ILP: Tomasulo Tomasulo Loop Example Loop:LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 • This time assume Multiply takes 4 clocks • Assume 1st load takes 8 clocks (L1 cache miss), 2nd load takes 1 clock (hit) • To be clear, will show clocks for SUBI, BNEZ – Reality: integer instructions ahead of Fl. Pt. Instructions • Show 2 iterations CSCE430/830 ILP: Tomasulo Loop Example Instruction status: ITER Instruction 1 1 1 Iter2 ation 2 Count 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time Name Add1 Add2 Add3 Mult1 Mult2 Busy No No No No No Op Vj Exec Write Issue Comp Result Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 S1 Vk S2 Qj RS Qk Code: LD MULTD SD SUBI BNEZ No No No No No No Added Store Buffers F0 F4 F4 R1 R1 Register result status Clock 0 F0 R1 80 F2 F4 F6 F8 Fu F10 F12 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Instruction Loop Fu Value of Register used for address, iteration control CSCE430/830 ILP: Tomasulo Loop Example Cycle 1 Instruction status: ITER Instruction 1 LD F0 j k 0 R1 1 Vj S1 Vk Reservation Stations: Time Name Busy Add1 No Add2 No Add3 No Mult1 No Mult2 No Exec Write Issue CompResult Op S2 Qj RS Qk Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes No No No No No 80 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 1 CSCE430/830 R1 80 F0 F2 F4 F6 F8 F10 F12 Fu Load1 ILP: Tomasulo Loop Example Cycle 2 Instruction status: ITER Instruction 1 1 LD MULTD F0 F4 j k 0 F0 R1 F2 1 2 Vj S1 Vk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No S2 Qj RS Qk R(F2) Load1 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes No No No No No 80 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 2 CSCE430/830 R1 80 F0 Fu Load1 F2 F4 F6 F8 F10 F12 Mult1 ILP: Tomasulo Loop Example Cycle 3 Instruction status: ITER Instruction 1 1 1 LD MULTD SD F0 F4 F4 j k 0 F0 0 R1 F2 R1 Reservation Stations: Time Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No Vj Exec Write Issue CompResult 1 2 3 S1 Vk S2 Qj RS Qk R(F2) Load1 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes No No Yes No No 80 80 Mult1 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 3 R1 80 F0 Fu Load1 F2 F4 F6 F8 F10 F12 Mult1 • Implicit renaming sets up data flow graph CSCE430/830 ILP: Tomasulo Loop Example Cycle 4 Instruction status: ITER Instruction 1 1 1 LD MULTD SD F0 F4 F4 j k 0 F0 0 R1 F2 R1 Reservation Stations: Time Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No Vj Exec Write Issue CompResult 1 2 3 S1 Vk S2 Qj RS Qk R(F2) Load1 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes No No Yes No No 80 80 Mult1 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 4 R1 80 F0 Fu Load1 F2 F4 F6 F8 F10 F12 Mult1 • Dispatching SUBI Instruction (not in FP queue) CSCE430/830 ILP: Tomasulo Loop Example Cycle 5 Instruction status: ITER Instruction 1 1 1 LD MULTD SD F0 F4 F4 j k 0 F0 0 R1 F2 R1 Reservation Stations: Time Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No Vj Exec Write Issue CompResult 1 2 3 S1 Vk S2 Qj RS Qk R(F2) Load1 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes No No Yes No No 80 80 Mult1 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 5 R1 72 F0 Fu Load1 F2 F4 F6 F8 F10 F12 Mult1 • And, BNEZ instruction (not in FP queue) CSCE430/830 ILP: Tomasulo Loop Example Cycle 6 Instruction status: ITER Instruction 1 1 1 2 LD MULTD SD LD F0 F4 F4 F0 j k 0 F0 0 0 R1 F2 R1 R1 1 2 3 6 Vj S1 Vk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No S2 Qj RS Qk R(F2) Load1 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes Yes No Yes No No 80 72 80 Mult1 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 6 R1 72 F0 Fu Load2 F2 F4 F6 F8 F10 F12 Mult1 • Notice that F0 never sees Load from location 80 CSCE430/830 ILP: Tomasulo Loop Example Cycle 7 Instruction status: ITER Instruction 1 1 1 2 2 LD MULTD SD LD MULTD F0 F4 F4 F0 F4 j k 0 F0 0 0 F0 R1 F2 R1 R1 F2 1 2 3 6 7 Vj S1 Vk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 Yes Multd S2 Qj RS Qk R(F2) Load1 R(F2) Load2 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes Yes No Yes No No 80 72 80 Mult1 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 7 R1 72 F0 Fu Load2 F2 F4 F6 F8 F10 F12 Mult2 • Register file completely detached from computation • First and Second iteration completely overlapped CSCE430/830 ILP: Tomasulo Loop Example Cycle 8 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 Vj S1 Vk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 Yes Multd S2 Qj RS Qk R(F2) Load1 R(F2) Load2 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes Yes No Yes Yes No 80 72 80 72 Mult1 Mult2 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 8 CSCE430/830 R1 72 F0 Fu Load2 F2 F4 F6 F8 F10 F12 Mult2 ILP: Tomasulo Loop Example Cycle 9 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 9 Vj S1 Vk S2 Qj Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 Yes Multd RS Qk R(F2) Load1 R(F2) Load2 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes Yes No Yes Yes No 80 72 80 72 Mult1 Mult2 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 9 R1 72 F0 Fu Load2 F2 F4 F6 F8 F10 F12 Mult2 • Load1 completing: who is waiting? • Note: Dispatching SUBI CSCE430/830 ILP: Tomasulo Loop Example Cycle 10 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time 4 Exec Write Issue CompResult 1 2 3 6 7 8 S1 Vk 9 10 10 S2 Qj Name Busy Op Vj Add1 No Add2 No Add3 No Mult1 Yes Multd M[80] R(F2) Mult2 Yes Multd R(F2) Load2 RS Qk Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No Yes No Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 Fu 72 80 72 Mult1 Mult2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 10 R1 64 F0 Fu Load2 F2 F4 F6 F8 F10 F12 Mult2 • Load2 completing: who is waiting? • Note: Dispatching BNEZ CSCE430/830 ILP: Tomasulo Loop Example Cycle 11 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time 3 4 Exec Write Issue CompResult 1 2 3 6 7 8 S1 Vk Name Busy Op Vj Add1 No Add2 No Add3 No Mult1 Yes Multd M[80] R(F2) Mult2 Yes Multd M[72] R(F2) 9 10 10 11 S2 Qj RS Qk Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 64 80 72 Fu Mult1 Mult2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 11 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult2 • Next load in sequence CSCE430/830 ILP: Tomasulo Loop Example Cycle 12 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time 2 3 Exec Write Issue CompResult 1 2 3 6 7 8 S1 Vk Name Busy Op Vj Add1 No Add2 No Add3 No Mult1 Yes Multd M[80] R(F2) Mult2 Yes Multd M[72] R(F2) 9 10 10 11 S2 Qj RS Qk Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 64 80 72 Fu Mult1 Mult2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 12 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult2 • Why not issue third multiply? CSCE430/830 ILP: Tomasulo Loop Example Cycle 13 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time 1 2 Exec Write Issue CompResult 1 2 3 6 7 8 S1 Vk Name Busy Op Vj Add1 No Add2 No Add3 No Mult1 Yes Multd M[80] R(F2) Mult2 Yes Multd M[72] R(F2) 9 10 10 11 S2 Qj RS Qk Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 64 80 72 Fu Mult1 Mult2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 13 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult2 • Why not issue third store? CSCE430/830 ILP: Tomasulo Loop Example Cycle 14 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time 0 1 Exec Write Issue CompResult 1 2 3 6 7 8 9 14 10 11 S1 Vk S2 Qj RS Qk Name Busy Op Vj Add1 No Add2 No Add3 No Mult1 Yes Multd M[80] R(F2) Mult2 Yes Multd M[72] R(F2) 10 Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 64 80 72 Fu Mult1 Mult2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 14 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult2 • Mult1 completing. Who is waiting? CSCE430/830 ILP: Tomasulo Loop Example Cycle 15 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 Reservation Stations: Time 0 Exec Write Issue CompResult 1 2 3 6 7 8 9 14 10 15 11 S1 Vk S2 Qj RS Qk Name Busy Op Vj Add1 No Add2 No Add3 No Mult1 No Mult2 Yes Multd M[72] R(F2) 10 15 Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 64 80 72 Fu [80]*R2 Mult2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 15 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult2 • Mult2 completing. Who is waiting? CSCE430/830 ILP: Tomasulo Loop Example Cycle 16 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 9 14 10 15 11 16 Vj S1 Vk S2 Qj RS Qk Reservation Stations: Time 4 Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No 10 15 R(F2) Load3 Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes No Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 64 80 72 Fu [80]*R2 [72]*R2 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 16 CSCE430/830 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult1 ILP: Tomasulo Loop Example Cycle 17 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 9 14 10 15 11 16 Vj S1 Vk S2 Qj RS Qk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No 10 15 R(F2) Load3 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes Yes 64 80 72 64 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 [80]*R2 [72]*R2 Mult1 Register result status Clock 17 CSCE430/830 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult1 ILP: Tomasulo Loop Example Cycle 18 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 9 14 18 10 15 10 15 Vj S1 Vk S2 Qj RS Qk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No 11 16 R(F2) Load3 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 No No Yes Yes Yes Yes 64 80 72 64 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 [80]*R2 [72]*R2 Mult1 Register result status Clock 18 CSCE430/830 R1 64 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult1 ILP: Tomasulo Loop Example Cycle 19 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 9 14 18 10 15 19 10 15 19 11 16 Vj S1 Vk S2 Qj RS Qk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No R(F2) Load3 Busy Addr Load1 Load2 Load3 Store1 Store2 Store3 No No Yes No Yes Yes Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 Fu 64 72 64 [72]*R2 Mult1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 Register result status Clock 19 CSCE430/830 R1 56 F0 Fu Load3 F2 F4 F6 F8 F10 F12 Mult1 ILP: Tomasulo Loop Example Cycle 20 Instruction status: ITER Instruction 1 1 1 2 2 2 LD MULTD SD LD MULTD SD F0 F4 F4 F0 F4 F4 j k 0 F0 0 0 F0 0 R1 F2 R1 R1 F2 R1 1 2 3 6 7 8 9 14 18 10 15 19 10 15 19 11 16 20 Vj S1 Vk S2 Qj RS Qk Reservation Stations: Time Exec Write Issue CompResult Name Busy Op Add1 No Add2 No Add3 No Mult1 Yes Multd Mult2 No R(F2) Load3 Busy Addr Fu Load1 Load2 Load3 Store1 Store2 Store3 Yes No Yes No No Yes 56 64 Mult1 Code: LD MULTD SD SUBI BNEZ F0 F4 F4 R1 R1 0 F0 0 R1 Loop R1 F2 R1 #8 ... F30 64 Register result status Clock 20 R1 56 F0 Fu Load1 F2 F4 F6 F8 F10 F12 Mult1 • Once again: In-order issue, out-of-order execution and out-of-order completion. ILP: Tomasulo CSCE430/830 Why can Tomasulo overlap iterations of loops? • Register renaming – Multiple iterations use different physical destinations for registers (dynamic loop unrolling). • Reservation stations – Permit instruction issue to advance past integer control flow operations – Also buffer old values of registers - totally avoiding the WAR stall that we saw in the scoreboard. • Other perspective: Tomasulo builds data flow dependency graph on the fly. CSCE430/830 ILP: Tomasulo Tomasulo’s scheme offers 2 major advantages (1) the distribution of the hazard detection logic – distributed reservation stations and the CDB – If multiple instructions waiting on a single result, & each instruction has other operand, then instructions can be released simultaneously by broadcasting on CDB – If a centralized register file were used, the units would have to read their results from the registers when register buses are available. (2) the elimination of stalls for WAW and WAR hazards CSCE430/830 ILP: Tomasulo Summary • Reservations stations: implicit register renaming to larger set of registers + buffering source operands – Prevents registers from being bottleneck – Avoids WAR, WAW hazards of Scoreboard – Allows loop unrolling in HW • Not limited to basic blocks (integer units gets ahead, beyond branches) • Today, helps cache misses as well – Don’t stall for L1 Data cache miss (insufficient ILP for L2 miss?) • Lasting Contributions – Dynamic scheduling – Register renaming – Load/store disambiguation • 360/91 descendants are Pentium III; PowerPC 604; MIPS R10000; HP-PA 8000; Alpha 21264 CSCE430/830 ILP: Tomasulo What about Precise Interrupts? • State of machine looks as if no instruction beyond faulting instructions has issued • Tomasulo had: In-order issue, out-of-order execution, and out-of-order completion • Need to “fix” the out-of-order completion aspect so that we can find precise breakpoint in instruction stream. CSCE430/830 ILP: Tomasulo Speculating with Tomasulo • Modern processors such as PowerPC 603/604, MIPS R10000, Intel Pentium II/III/4, Alpha 21264 extend Tomasulo’s approach to support speculation • Key ideas: – separate execution from completion: allow instructions to execute speculatively but do not let instructions update registers or memory until they are no longer speculative – therefore, add a final step – after an instruction is no longer speculative – when it is allowed to make register and memory updates, called instruction commit – allow instructions to execute out of order but force them to commit in order – add a hardware buffer, called the reorder buffer (ROB), with registers to hold the result of an instruction between execution completion and commit CSCE430/830 ILP: Tomasulo HW support for precise interrupts • Need HW buffer for results of uncommitted instructions: reorder buffer – Use reorder buffer number instead of reservation station when execution completes FP – Supplies operands between Op execution completion & commit Queue – (Reorder buffer can be operand source => more registers like RS) – Instructions commit – Once an instruction commits, Res Stations result is put into register FP Adder – As a result, easy to undo speculated instructions on mispredicted branches or exceptions CSCE430/830 Reorder Buffer FP Regs Res Stations FP Adder ILP: Tomasulo ROB Data Structure ROB entry fields • Instruction type: branch, store, register operation (i.e., ALU or load) • State: indicates if instruction has completed execution and value is ready • Destination: where result is to be written – register number for register operation (i.e. ALU or load), memory address for store – branch has no destination result • Value: holds the value of instruction result until time to commit Additional reservation station field • Destination: Corresponding ROB entry number CSCE430/830 ILP: Tomasulo Four Steps of Speculative Tomasulo Algorithm 1. Issue—get instruction from FP Op Queue If reservation station and reorder buffer slot free, issue instr & send operands & reorder buffer no. for destination (this stage sometimes called “dispatch”) 2. Execution—operate on operands (EX) When both operands ready then execute; if not ready, watch CDB for result; when both in reservation station, execute; checks RAW (sometimes called “issue”) 3. Write result—finish execution (WB) Write on Common Data Bus to all awaiting FUs & reorder buffer; mark reservation station available. 4. Commit—update register with reorder result When instr. at head of reorder buffer & result present, update register with result (or store to memory) and remove instr from reorder buffer. Mispredicted branch flushes reorder buffer (sometimes called “graduation”) CSCE430/830 ILP: Tomasulo Program Counter Valid Exceptions? Result Reorder Table FP Op Queue Res Stations Compar network Dest Reg What are the hardware complexities with reorder buffer (ROB)? Reorder Buffer FP Regs Res Stations FP Adder FP Adder • How do you find the latest version of a register? – (As specified by Smith paper) need associative comparison network – Could use future file or just use the register result status buffer to track which specific reorder buffer has received the value • Need as many ports on ROB as register file CSCE430/830 ILP: Tomasulo Speculative Tomasulo Example LD ADDD DIVD BNEZ LD ADDD SD … F0 F10 F2 F2 F4 F0 F4 10 F4 F10 Exit 0 F4 0 R2 F0 F6 R3 F9 R3 Exit: CSCE430/830 ILP: Tomasulo Tomasulo With Reorder buffer: Dest. Value Instruction Done? ROB7 FP Op Queue ROB6 Newest ROB5 ROB4 Reorder Buffer ROB3 ROB2 F0 LD F0,10(R2) Registers Dest CSCE430/830 ROB1 To Memory from Memory Dest FP adders N Oldest Reservation Stations Dest 1 10+R2 FP multipliers ILP: Tomasulo Tomasulo With Reorder buffer: Dest. Value Instruction Done? ROB7 FP Op Queue ROB6 Newest ROB5 ROB4 Reorder Buffer ROB3 F10 ADDD F10,F4,F0 N ROB2 F0 LD F0,10(R2) N ROB1 Registers Dest 2 ADDD R(F4),ROB1 FP adders CSCE430/830 Oldest To Memory from Memory Dest Reservation Stations Dest 1 10+R2 FP multipliers ILP: Tomasulo Tomasulo With Reorder buffer: Dest. Value Instruction Done? ROB7 FP Op Queue ROB6 Newest ROB5 Reorder Buffer ROB4 F2 DIVD F2,F10,F6 N ROB3 F10 ADDD F10,F4,F0 N ROB2 F0 LD F0,10(R2) N ROB1 Registers Dest 2 ADDD R(F4),ROB1 FP adders CSCE430/830 Oldest To Memory Dest 3 Reservation Stations DIVD ROB2,R(F6) from Memory Dest 1 10+R2 FP multipliers ILP: Tomasulo • Skip some cycles CSCE430/830 ILP: Tomasulo Tomasulo With Reorder buffer: Dest. Value Instruction ROB7 FP Op Queue Reorder Buffer F0 ADDD F0,F4,F6 N ROB6 F4 LD F4,0(R3) N ROB5 -- BNE F2,<…> N ROB4 F2 DIVD F2,F10,F6 N ROB3 F10 ADDD F10,F4,F0 N ROB2 F0 LD F0,10(R2) N ROB1 Registers Dest 2 6 ADDD ADDD R(F4),ROB1 ROB5, R(F6) FP adders CSCE430/830 Done? Newest Oldest To Memory Dest 3 Reservation Stations DIVD ROB2,R(F6) from Memory Dest 1 10+R2 5 0+R3 FP multipliers ILP: Tomasulo Tomasulo With Reorder buffer: Dest. Value FP Op Queue N ROB7 F0 ADDD F0,F4,F6 N ROB6 F4 LD F4,0(R3) N ROB5 -- BNE F2,<…> N ROB4 F2 DIVD F2,F10,F6 N ROB3 F10 ADDD F10,F4,F0 N ROB2 F0 LD F0,10(R2) N ROB1 ROB5 Registers Dest 2 6 ADDD ADDD R(F4),ROB1 ROB5, R(F6) FP adders CSCE430/830 Done? SD 0(R3),F4 -- Reorder Buffer Instruction Newest Oldest To Memory Dest 3 Reservation Stations DIVD ROB2,R(F6) from Memory Dest 1 10+R2 5 0+R3 FP multipliers ILP: Tomasulo Tomasulo With Reorder buffer: Dest. Value FP Op Queue Y ROB7 ADDD F0,F4,F6 N ROB6 LD F4,0(R3) Y ROB5 -- BNE F2,<…> N ROB4 F2 DIVD F2,F10,F6 N ROB3 F10 ADDD F10,F4,F0 N ROB2 F0 LD F0,10(R2) N ROB1 M[10] F0 F4 M[10] Registers Dest 2 6 ADDD ADDD R(F4),ROB1 M[10],R(F6) FP adders CSCE430/830 Done? SD 0(R3),F4 -- Reorder Buffer Instruction Newest Oldest To Memory Dest 3 Reservation Stations DIVD ROB2,R(F6) from Memory Dest 1 10+R2 FP multipliers ILP: Tomasulo Tomasulo With Reorder buffer: Dest. Value FP Op Queue Reorder Buffer Instruction SD 0(R3),F4 Y ROB7 ADDD F0,F4,F6 Ex ROB6 LD F4,0(R3) Y ROB5 -- BNE F2,<…> N ROB4 F2 DIVD F2,F10,F6 N ROB3 F10 ADDD F10,F4,F0 N ROB2 F0 LD F0,10(R2) N ROB1 -- M[10] F0 --- F4 M[10] Registers Dest 2 ADDD R(F4),ROB1 FP adders CSCE430/830 Done? Newest Oldest To Memory Dest 3 Reservation Stations DIVD ROB2,R(F6) from Memory Dest 1 10+R2 FP multipliers ILP: Tomasulo Notes • If a branch is mispredicted, recovery is done by flushing the ROB of all entries that appear after the mispredicted branch – entries before the branch are allowed to continue – restart the fetch at the correct branch successor • When an instruction commits or is flushed from the ROB then the corresponding slots become available for subsequent instructions CSCE430/830 ILP: Tomasulo Tomasulo Algorithm vs. Scoreboard • Control & buffers distributed with Function Units (FU) vs. centralized in scoreboard; – FU buffers called “reservation stations”; have pending operands • Registers in instructions replaced by values or pointers to reservation stations(RS); called register renaming ; – avoids WAR, WAW hazards – More reservation stations than registers, so can do optimizations compilers can’t • Results to FU from RS, not through registers, over Common Data Bus that broadcasts results to all FUs • Load and Stores treated as FUs with RSs as well • Integer instructions can go past branches, allowing FP ops beyond basic block in FP queue CSCE430/830 ILP: Tomasulo Summary • Reservations stations: implicit register renaming to larger set of registers + buffering source operands – Prevents registers as bottleneck – Avoids WAR, WAW hazards of Scoreboard – Allows loop unrolling in HW • Not limited to basic blocks (integer units gets ahead, beyond branches) • Today, helps cache misses as well – Don’t stall for L1 Data cache miss (insufficient ILP for L2 miss?) • Lasting Contributions – Dynamic scheduling – Register renaming – Load/store disambiguation • 360/91 descendants are Pentium III; PowerPC 604; MIPS R10000; HP-PA 8000; Alpha 21264 CSCE430/830 ILP: Tomasulo