Estimating biophysical parameters from CO2 flask and flux observations Kevin Schaefer1, P.
Download ReportTranscript Estimating biophysical parameters from CO2 flask and flux observations Kevin Schaefer1, P.
Estimating biophysical parameters from CO2 flask and flux observations Kevin Schaefer1, P. Tans1, A. S. Denning2, J. Collatz3, L. Prihodko2, I. Baker2, W. Peters1, A. Andrews1, and L. Bruhwiler1 1NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, Colorado of Atmospheric Science, Colorado State University, Fort Collins, Colorado 3Goddard Space Flight Center, Greenbelt, Maryland 2Dept. Objective • Understand processes driving terrestrial CO2 fluxes • Technique: estimate model parameters using data assimilation • Model: – Simple Biosphere (SiB) – Carnegie-Ames-Stanford Approach (CASA) • Observations: – CO2 concentrations from CMDL flask network – CO2 concentrations & fluxes from towers Status • • • • • 2-year NAS Postdoc fellowship @ CMDL Joint effort: CMDL & CSU SibCasa in final testing Switching to EnKF Preliminary results – Offline with SiB2 & TransCom fluxes – Single point @ WLEF Combined SibCasa Model Simple Biosphere (SiB) Biophysical Good photosynthesis model High time resolution CASA Biogeochemical Good respiration model Coarse time resolution SibCasa Good GPP Model Good respiration model High time resolution Which parameters to estimate? Influence High no way no excuse no problem no bother Low Low Uncertainty High WLEF Tall Tower in Wisconsin WLEF • Hourly and monthly average net CO2 fluxes Monthly Observed vs. SibCasa Fluxes at WLEF Observed Net CO2 Flux (mmole/m2/s) 1.5 SibCasa 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 1996.0 1996.5 1997.0 1997.5 Date (year) 1998.0 1998.5 1999.0 Hourly Observed vs. SibCasa Fluxes at WLEF Observed SibCasa (micromole C/m2/s) (mmole/m2/s) Net CO2NEEFlux 20 15 10 5 0 -5 -10 -15 -20 1996 1996.5 1997 1997.5 Time (year) Date (year) 1998 1998.5 1999 SibCasa diurnal cycle too small at WLEF Observed SibCasa (micromole C/m2/s) (mmole/m2/s) Net CO2NEEFlux 15 June 2-5, 1997 10 5 0 -5 -10 -15 -20 -25 1997.500 1997.501 1997.502 1997.503 1997.504 1997.505 Date (year) 1997.506 Date (year) 1997.507 1997.508 1997.509 1997.510 Sample Estimate: Respiration Temperature Response (Q10) Scaling Factor (-) Q10 = 3.0 ST Q10 T Tref 10 Q10 = 2.0 Q10 = 1.0 Soil Temperature (K) Data Assimilation: Minimize Cost function (F) T 1 T 1 F x x a Ea x x a Y f x E y Y f x • Optimize using Marquardt-Levenberg method (variant of inverse Hessian) • No model adjoint: approximate F slope Q10 Cost Function at WLEF (no a priori) Normalized Cost (-) Q10 (mon) Q10 (mon) Q10 (hr) 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 Q10 • Hourly Obs: aliasing Q10 to “fix” diurnal cycle Initial Slow Pool Cost Function at WLEF slow (mon) slow (hr) Equilibrium Pool Size Normalized Cost (-) 0.06 0.05 0.04 0.03 0.02 0.01 0.00 0 50 100 150 200 250 300 Pool Size (mole/m2) • Monthly Obs: aliasing Slow to “fix” low GPP in 1998 Conclusions • We can estimate model parameters from CO2 data • Be careful about data assimilation “correcting” for model flaws What process information can we extract from CO2 flask and flux tower observations? Atmospheric Transport Net Flux Flux Tower Fossil Fuel Net Flux Biosphere Processes Ocean Processes Flask Objectives • Use model physics to better understand mechanisms that drive CO2 fluxes • Optimize model parameters to best match model output & observations • Estimate hard-to-measure parameters: Q10, turnover, pool sizes, etc. • Joint effort: CMDL & CSU Postdoc Plan • 6 Months for Software development – Add geochemistry from CASA to SiB2 • 8 months for simulations and testing – Flux towers first, then flasks • 6 months writing papers • Status: 3 months into SiB-CASA development DAS Setup • Combine SiB3 with CASA – SiB3: Photosynthesis & turbulent fluxes – CASA: biogeochemistry and respiration • Integrate Sibcasa into TM5 • Use Ensemble Kalman Filter (EnKF) DAS Experiments • Single point: Sibcasa & flux tower data • Offline: Sibcasa & Transcom3 fluxes – Compare NCEP, ECMWF, GEOS4 reanalysis • Integrated: Sibcasa in TM5 & flask data Problems • Parameter Estimation – Parameter compensation – Model/data biases • EnKF – – – – 3-D [CO2] field from sparse flask observations How to incorporate CO2 memory How to go from parameter to flask Number ensemble members Data Assimilation: Minimize Cost Function (F) F y f ( x) 2 E 2 y = observations f(x) = model output E = uncertainty x = parameter to estimate Data Assimilation: Minimize Cost function (F) • Variance between modeled & observed fluxes observed flux SiB2 flux F y f x 2 E 2 y flux uncertainty parameter a priori x xa 2 E 2 a a priori uncertainty Data Assimilation: Minimize Cost function (F) F x x a E x x a Y f x Ey1 Y f x T 1 a T • Iterate using Marquardt-Levenberg method (variant of inverse Hessian) xi 1 xi E K E K i 1 a T i 1 y E x 1 1 a T 1 x K i a i E y Y f x f x i x f x i • Approximate Jacobian: K i x Data Assimilation: Minimize Cost function (F) CO2 Flask Measurements Transport Models LAI Weather TransCom Inversion SiB2 Estimated NEE Modeled NEE Iterate Assimilation T Q10 Ensemble Kalman Filter (EnKF) • Use ensemble statistics to approximate terms in Kalman gain equation • Run ensemble ~100 members • No adjoint required • Experimental: still under development History of Kevin • 1984: BS in Aerospace Engineering • 1984-1993: NASA – Space Shuttle, Space Station – Mission to Planet Earth • 1994-1997: White House • 1997-2004: CSU Atmospheric Science Kevin’s Family Susy Jason Simple Biosphere Model, Version 2 (SiB2) NEE=R-GPP SH LH Tc Canopy Canopy Air Space GPP CO2 Ta Rha R Snow Tg W1 W2 Soil 11 to 45-year simulations T6 T5 T4 T3 T2 W3 T1 10-min time step SiB2 Input • National Centers for Environmental Prediction (NCEP) reanalysis – 1958-2002, every 6 hours, 2x2º resolution • European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis – 1978-1993, every 6 hours, 1x1º resolution • Leaf Area Index: Fourier-Adjustment, Solar zenith angle corrected, Interpolated Reconstructed (FASIR) Normalized Difference Vegetation Index (NDVI) data – 1982-1998, monthly, variable resolution NOAA’s global flask network • Run transport backwards to estimate CO2 fluxes • Compare estimated & SiB2 regional fluxes Initial Coarse Woody Debris Pool at WLEF cwd (mon) cwd (hr) Equilibrium Pool Size Normalized Cost (-) 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 0 50 100 150 200 250 300 Pool Size (mole/m2) • Monthly Obs: aliasing to fix low GPP in 1998 • Hourly Obs: aliasing to “fix” diurnal cycle Q10 Estimated from Transcom Fluxes Biome Tropical broadleaf evergreen forest Broadleaf deciduous forest Broadleaf-needleleaf forest Needleleaf forest Needleleaf-deciduous forest Tropical Grasslands Semi-arid grasslands Broadleaf shrubs with bare soil Tundra Desert Agriculture and C3 grasslands Q10 (-) 1.2 ± 0.1 2.2 ± 0.3 1.9 ± 0.1 2.6 ± 0.1 2.2 ± 0.1 1.4 ± 0.0 1.6 ± 0.1 1.7 ± 0.2 2.1 ± 0.2 2.6 ± 0.3 1.6 ± 0.0 Flasks: Turnover (T) and Q10 Biome Tropical broadleaf evergreen forest Broadleaf deciduous forest Broadleaf-needleleaf forest Needleleaf forest Needleleaf-deciduous forest Tropical Grasslands Semi-arid grasslands Broadleaf shrubs with bare soil Tundra Desert Agriculture and C3 grasslands T (mon) 12.8 ± 0.8 13.3 ± 2.2 13.6 ± 0.8 12.9 ± 0.5 12.8 ± 0.4 12.8 ± 0.4 12.4 ± 1.0 16.3 ± 1.9 12.4 ± 1.0 12.9 ± 2.4 12.8 ± 0.4 Q10 (-) 1.2 ± 0.1 2.2 ± 0.3 1.9 ± 0.1 2.6 ± 0.1 2.2 ± 0.1 1.4 ± 0.0 1.6 ± 0.1 1.7 ± 0.2 2.1 ± 0.2 2.6 ± 0.3 1.6 ± 0.0 Global Estimated T and Q10 • Global Q10 = 1.67±0.04 – Agrees well with published values (1.6-2.4) – Q10 increases with shorter time scales • Global T = 12.7 ±0.8 months – Represents only fast turnover pools – Average between autotrophic & heterotrophic – Need more carbon pools in SiB2