Chapter 2: Mathematical Models of Systems Objectives We use quantitative mathematical models of physical systems to design and analyze control systems.

Download Report

Transcript Chapter 2: Mathematical Models of Systems Objectives We use quantitative mathematical models of physical systems to design and analyze control systems.

Chapter 2: Mathematical Models of Systems
Objectives
We use quantitative mathematical models of physical systems to design and
analyze control systems. The dynamic behavior is generally described by
ordinary differential equations. We will consider a wide range of systems,
including mechanical, hydraulic, and electrical. Since most physical systems are
nonlinear, we will discuss linearization approximations, which allow us to use
Laplace transform methods.
We will then proceed to obtain the input–output relationship for components and
subsystems in the form of transfer functions. The transfer function blocks can be
organized into block diagrams or signal-flow graphs to graphically depict the
interconnections. Block diagrams (and signal-flow graphs) are very convenient
and natural tools for designing and analyzing complicated control systems
Illustrations
Introduction
Six Step Approach to Dynamic System Problems
• Define the system and its components
• Formulate the mathematical model and list the necessary
assumptions
• Write the differential equations describing the model
• Solve the equations for the desired output variables
• Examine the solutions and the assumptions
• If necessary, reanalyze or redesign the system
Illustrations
Differential Equation of Physical Systems
Ta( t)  Ts( t)
Ta( t)
( t)
Ta( t)
0
Ts( t)
s( t)  a( t)
= th ro ug h - v ari abl e
an gu lar rate d ifferen ce = acros s-v ari abl e
Illustrations
Differential Equation of Physical Systems
Electrical Inductance
Energy or Power
Describing Equation
v 21
d
L i
dt
v21
1 d
 F
k dt
E
1
2
2
 L i
Translational Spring
2
E
1 F

2 k
Rotational Spring
21
1d
 T
k dt
P21
d
I Q
dt
2
E
1 T

2 k
Fluid Inertia
Illustrations
E
1
2
2
 I Q
Differential Equation of Physical Systems
Electrical Capacitance
i
d
C v21
dt
E
F
d
M v 2
dt
E
T
d
J 2
dt
E
Q
d
Cf  P21
dt
E
q
d
Ct T2
dt
E
1
2
2
 M v21
Translational Mass
1
2
2
 M v 2
Rotational Mass
1
2
2
 J 2
Fluid Capacitance
1
2
Thermal Capacitance
Illustrations
2
 Cf  P21
Ct T2
Differential Equation of Physical Systems
Electrical Resistance
1
1
2
 v 21
P
F
b v21
P
b v21
T
b 21
P
b 21
i
R
R
 v 21
Translational Damper
2
Rotational Damper
2
Fluid Resistance
Q
1
 P21
P
 T2 1
P
Rf
1
Rf
2
 P21
Thermal Resistance
q
Illustrations
1
Rt
1
Rt
 T2 1
Differential Equation of Physical Systems
M
Illustrations
d
2
d
y ( t)  b  y ( t)  k y ( t)
2
dt
dt
r( t)
Differential Equation of Physical Systems
t
1 
d
 C v ( t )    v ( t) d t
R
L 0
dt
v( t)
y( t)
Illustrations
  1 t
K 1 e

r( t )

 sin  1 t   1
Differential Equation of Physical Systems
Illustrations
Differential Equation of Physical Systems
K2   1
 2   .5
y ( t)   K2 e
  2 t
y 1( t)   K2 e
2   1 0

2  2

 si n  2 t   2
  2 t
y 2( t)   K2 e
  2 t
1
y ( t)
y 1( t )
0
y 2( t )
1
0
1
2
3
4
t
Illustrations
5
6
7
Linear Approximations
Illustrations
Linear Approximations
Linear Systems - Necessary condition
Principle of Superposition
Property of Homogeneity
Taylor Series
http://www.maths.abdn.ac.uk/%7Eigc/tch/ma2001/notes/node46.html
Illustrations
Linear Approximations – Example 2.1
M   2 00g m
g   9 .8
m
s
 
L   1 00cm
2
 0   0rad
    
1 5
16
 
T0   M  g  L si n  0
T1     M  g  L si n  
 

T2     M  g  L co s  0     0  T0
10
5
T 1(  )
T 2(  )
0
5
10
4
3
2
1
0
1
2
3
4

Illustrations
St udents are encouraged to inv es t igate linear approxim at ion acc uracy f or dif f erent val
0
The Laplace Transform
Historical Perspective - Heaviside’s Operators
Origin of Operational Calculus (1887)
Illustrations
Historical Perspective - Heaviside’s Operators
Origin of Operational Calculus (1887)
p
1
R  L p
1
p
n
 H( t)
 H( t)
t
v = H(t)
0
Z( p )
Z( p )
i
i
p
v
i
t

 1d u

1
d
dt
Expanded in a power series
R  L p
1
R 
L p  1 

L p 

 H( t)
 R 1  R 2 1  R 3 1 
     
  
.....  H( t)
R L p  L
2  L
3

p
p


1
n
n
 R  2 t2  R  3 t3  
1 R
   t          .. 
R L
 L  2  L  3  
i
(*) Oliver Heaviside: Sage in Solitude, Paul J. Nahin, IEEE Press 1987 .
Illustrations
 R

    t
1 
L 
1  e   
R
The Laplace Transform
D ef inition
L( f ( t) )




f ( t)  e
 s t
dt
= F(s)
0
H ere the complex f requency is
s
  j w
The Laplac e Trans f orm ex ist s when




0
Illustrations
f ( t)  e
 s t
dt  
t his means that the int egral conv erges
The Laplace Transform
D et ermine the Laplac e transf orm f or the f unc tions
a)
f1( t )   1

F1( s )   


e
 s t
dt
0
b)
F2( s )
f2( t )




0
Illustrations
e
e
t0
f or
1  ( s t )
 e
s
=
1
s
 ( a t )
 ( a t )  ( s t )
e
dt
=

1
s1
e
 [ ( s a)  t ]
F2( s )
1
sa
The Laplace Transform
Ev aluat e t he laplace transf orm of t he deriv ativ e of a f unct ion
 d f ( t) 

d t 
L





 ( s t )
d
f ( t)  e
dt
dt
0
by t he use of
where
u
e

 udv

 ( s t )
=
dv

u v   v d u

d f( t)
and, f rom whic h
s  e
du
 ( s t )
d t
and
v
f ( t)
we obt ain




udv
=
f ( t)  e
 ( s t )
0




f ( t)   s  e
 ( s t ) 
dt
0
= -f (0+) +

s 


0
f ( t)  e
 ( s t )
dt
 d f ( t) 

 d t  = s F(s ) - f (0+) not e that t he init ial condit ion is inc luded in the transf ormat ion
L 
Illustrations
The Laplace Transform
Prac tic al Ex ample - C onsider the circuit .
The KVL equation is
d
4 i( t )  2 i( t )
dt
ass ume i(0+) = 5 A
0
Apply ing t he Laplac e Trans f orm, we hav e





 4 i( t)  2 d i( t)   e


dt


 ( s t )
dt
0
I( s )  
5
s2

i( t)  e
0
0
4 I( s )  2 ( s  I( s )  i( 0) )

4 

 ( s t )

d t  2 



 ( s t )
d
i( t)  e
dt
dt
0
0
4 I( s )  2 s  I( s )  1 0 0
0
t rans f orming back t o t he t ime domain, with our pres ent knowledge of
Laplac e trans f orm, we may s ay t hat
t  ( 0  0 .01 2)
6
i( t )  5 e
 ( 2 t )
4
i( t )
2
0
Illustrations
0
1
t
2
The Laplace Transform
The Partial-Fraction Expansion (or Heaviside expansion theorem)
Suppose that
F(s )
s  z1
The partial fraction expansion indicates that F(s) consists of
( s  p1 )  ( s  p2 )
a sum of terms, each of which is a factor of the denominator.
The values of K1 and K2 are determined by combining the
individual fractions by means of the lowest common
denominator and comparing the resultant numerator
or
coefficients with those of the coefficients of the numerator
F(s )
K1
s  p1

K2
before separation in different terms.
s  p2
Evaluation of Ki in the manner just described requires the simultaneous solution of n equations.
An alternative method is to multiply both sides of the equation by (s + pi) then setting s= - pi, the
right-hand side is zero except for Ki so that
Ki
Illustrations
( s  pi )  ( s  z1 )
( s  p1 )  ( s  p2 )
s = - pi
The Laplace Transform
Property
Tim e Domain
Frequenc y Domain
e
 ( s T )
f ( t  T)  u ( t  T)
1. Time delay


a a
1
2. Time s caling
3. Frequency
4. Frequency
5. Frequenc y
f ( at)
s hif t ing
I nt egrat ion
f ( t)  e
Theorem
 ( a t )
Illustrations
Theorem
s
Li mf
( ( t) )
F( s  a)



f ( t)

F( s ) d s
0
f ( 0)
t -> 0
7. Final-v alue
 F
d
 F( s )
ds
dif f erent iationt  f ( t)
t
6. I nit ial-v alue
 F( s )
Li ms
(  F( s ) )
s -> inf inite
Li mf
( ( t) )
Li ms
(  F( s ) )
t -> inf inite
s -> 0
The Laplace Transform
Useful Transform Pairs
Illustrations
The Laplace Transform
Consider the mass-spring-damper system
( Ms  b )  y o
Y( s )
equat ion 2.21
2
Ms  b s  k
y( s )
s1
s2
 s  b   y 


M o

s 2   b   s  k 

M

M

 



2
s  2  n  n
2
2
  n  n    1

s  2  n
n
k
M

2
b
k M 
2
  n  n    1
R oots
R eal
R eal repeat ed
I maginary (conjugat es )
Illustrations
C omplex (c onjugat es)


2


2
s1
  n  j n  1  
s2
  n  j n  1  
The Laplace Transform
Illustrations
The Transfer Function of Linear Systems
V1( s )
 R  1   I( s )


Cs 

V2( s )


 Cs   I( s )


V2( s )
V1( s )
Illustrations
1
Z 2( s )
1
Cs
R 
Z 1( s )
Z2( s )
1
Cs
Z 1( s )  Z 2( s )
R
1
Cs
The Transfer Function of Linear Systems
Example 2.2
d2
The partial f raction expansion y ields:
d
y( t)  4 y( t)  3 y( t) 2 r( t)
2
dt
dt
Initial Conditions: Y( 0) 1
d
y( 0)
dt
0
1
1
 3
 
 2
1
2
2
3
3
Y( s ) 




 

r( t) 1
 ( s  1) ( s  3)   ( s  1) ( s  3)  s
The Laplace transf orm y ields:
Theref ore the transient response is:
s 2Y(s )  s y(0)  4(s Y(s )  y(0))  3Y(s )
Since R(s)=1/s and y (0)=1, we obtain:
( s  4)
2
Y( s )

2
2
s  4s  3 s  s  4s  3

Illustrations



2 R( s )
y( t)
 3  e t  1  e 3 t    1e t  1  e 3 t   2
2
 
 3
2
3

 

The steady -state response is:
lim y( t)
t 
2
3
The Transfer Function of Linear Systems
Illustrations
The Transfer Function of Linear Systems
Illustrations
The Transfer Function of Linear Systems
Illustrations
The Transfer Function of Linear Systems
Illustrations
The Transfer Function of Linear Systems

Kf if
Tm
K1 Kf if( t )  ia( t )
f ield cont roled m ot or - Lapalc e Transf orm
Vf( s )
K1 Kf Ia If( s )
Rf  Lf s  If( s )
Tm( s )
TL( s )  Td ( s )
TL( s )
J s   ( s )  b  s   ( s )
Tm( s )
2
rearranging equat ions
TL( s )
Tm( s )  Td ( s )
Tm( s )
Km If( s )
If( s )
Illustrations
Vf( s )
Rf  Lf s
Td ( s )
0
 (s )
Km
Vf( s )
s  ( J s  b )  Lf s  Rf


The Transfer Function of Linear Systems
Illustrations
The Transfer Function of Linear Systems
Illustrations
The Transfer Function of Linear Systems
Illustrations
The Transfer Function of Linear Systems
Illustrations
The Transfer Function of Linear Systems
V 2( s )
1
V 1( s )
RCs
V 2( s )
V 1( s )
Illustrations
RCs
The Transfer Function of Linear Systems
Illustrations
V 2( s )
R 2 R 1 C s  1
V 1( s )
R1
V 2( s )
R 1 C 1 s  1 R 2 C 2 s  1
V 1( s )
R 1 C 2 s
The Transfer Function of Linear Systems
 (s )
V f(s )
 (s )
V a( s )
Illustrations
Km
s  ( J s  b) L f  s  R f 
Km
s   R a  L a s  ( J s  b)  K b K m
The Transfer Function of Linear Systems
 (s )
Km
s   s  1
Vc( s )

J
( b  m)
m = slope of linearized
t orque-speed c urv e
(normally negativ e)
 K 
 R R 
 c q
Vo( s )
 s  c  1   s  q  1
Vc( s )
c
Lc
Rc
q
Lq
Rq
For the unloaded c as e:
id 0
c q
0 .05s  c  0 .5s
V1 2
Illustrations
Vq
V3 4
Vd
The Transfer Function of Linear Systems
Y( s )
K
X( s )
s ( Ms  B)
A  kx
K
B
kp
kx
g
d
g
dx
g ( x P)
kp
2

A 
b 

k
p


d
dP
fl ow
A = area of pist on
Gear Rat io = n = N 1/ N2
N2  L
Illustrations
N1  m
L
n  m
L
n  m
g
The Transfer Function of Linear Systems
V2( s )
R2
R2
V1( s )
R
R1  R2
R2

R
 max
ks  1( s )   2( s )
V2( s )
ks  error( s )
ks
Illustrations

V2( s )
Vbattery
 max

The Transfer Function of Linear Systems
V2( s )
Kt
Kt ( s )
Kt s   ( s )
constant
V2( s )
ka
V1( s )
s  1
R o = out put resis t ance
C o = out put capac itanc e

Ro Co
  1s
and is of t en negligible
f or cont roller am plif ier
Illustrations
The Transfer Function of Linear Systems
y ( t)  xin( t)
xo( t)
s
Xo( s )
Xin( s )
2
s 
2
 b s  k
M
M
 
For low f requenc y os cillat ions, where
  n
Xo j 
Xin j 

2
k
M
T( s )
q(s )
1
Ct s   Q S 

T
Ct
Q
S
Rt
q( s )
Illustrations


R
1
To  Te = t emperat ure dif f erenc e due to t hermal proc ess
=
=
=
=
=
t hermal c apacit ance
f luid f low rat e = cons t ant
s pecif ic heat of water
t hermal resis tanc e of insulat ion
rat e of heat f low of heating element
The Transfer Function of Linear Systems
x
r 
conv erts radial motion to linear motion
Illustrations
Block Diagram Models
Illustrations
Block Diagram Models
Illustrations
Block Diagram Models
Illustrations
Original Diagram
Equivalent Diagram
Original Diagram
Equivalent Diagram
Block Diagram Models
Illustrations
Original Diagram
Equivalent Diagram
Original Diagram
Equivalent Diagram
Block Diagram Models
Illustrations
Original Diagram
Equivalent Diagram
Original Diagram
Equivalent Diagram
Block Diagram Models
Illustrations
Block Diagram Models
Example 2.7
Illustrations
Block Diagram Models
Illustrations
Example 2.7
Signal-Flow Graph Models
For complex systems, the block diagram method can become
difficult to complete. By using the signal-flow graph model, the
reduction procedure (used in the block diagram method) is not
necessary to determine the relationship between system variables.
Illustrations
Signal-Flow Graph Models
Illustrations
Y1( s )
G1 1( s )  R1( s )  G1 2( s )  R2( s )
Y2( s )
G2 1( s )  R1( s )  G2 2( s )  R2( s )
Signal-Flow Graph Models
Illustrations
a11 x1  a12 x2  r1
x1
a21 x1  a22 x2  r2
x2
Signal-Flow Graph Models
Example 2.8
Illustrations
Y( s )
G 1 G 2 G 3 G 4 1  L 3  L 4  G 5 G 6 G 7 G 8 1  L 1  L 2
R( s )
1  L 1  L 2  L 3  L 4  L 1 L 3  L 1 L 4  L 2 L 3  L 2 L 4
Signal-Flow Graph Models
Example 2.10
Illustrations
Y( s )
G 1 G 2 G 3 G 4
R( s )
1  G 2 G 3 H 2  G 3 G 4 H 1  G 1 G 2 G 3 G 4 H 3
Signal-Flow Graph Models
P1

1
Illustrations
Y( s )
P1  P2  2  P3
R( s )

G1 G2 G3 G4 G5 G6
P2
G1 G2 G7 G6
P3
G1 G2 G3 G4 G8
1   L1  L2  L3  L4  L5  L6  L7  L8   L5 L7  L5 L4  L3 L4
3
1
2
1  L5
1  G4 H4
Design Examples
Illustrations
Design Examples
Speed control of an electric traction motor.
Illustrations
Design Examples
Illustrations
Design Examples
Illustrations
Design Examples
Illustrations
Design Examples
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
error
Sys1 = sysh2 / sysg4
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
error
Num4=[0.1];
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
The Simulation of Systems Using MATLAB
Illustrations
Sequential Design Example: Disk Drive Read System
Illustrations
Sequential Design Example: Disk Drive Read System
Illustrations
Sequential Design Example: Disk Drive Read System
=
Illustrations
P2.11
Illustrations
P2.11
1
1
 L d  L a  s   R d  R a
L c s  R c
+Vd
Vq
Id
K2
K1
1
L q s  R q
Illustrations
J s  b
s

Vc
Ic
1
Tm
Km
-Vb
1
K3
Illustrations
http://www.jhu.edu/%7Esignals/sensitivity/index.htm
Illustrations
http://www.jhu.edu/%7Esignals/
Illustrations