Clean, Affordable Decentralized Energy Options -- Burma Chris Greacen Palang Thai MEE-Net Seminar on Energy in Burma 24 Jan 2011 Chiang Mai.
Download
Report
Transcript Clean, Affordable Decentralized Energy Options -- Burma Chris Greacen Palang Thai MEE-Net Seminar on Energy in Burma 24 Jan 2011 Chiang Mai.
Clean, Affordable
Decentralized Energy
Options -- Burma
Chris Greacen
Palang Thai
MEE-Net Seminar on Energy in Burma
24 Jan 2011
Chiang Mai
Outline
• Intro to energy
– Energy history
– World energy situation
– Renewable energy
• Burma
– Default scenarios
– For revenue: Mega dams, gas exports
– For electrification: dam & diesel generation, likely power imports
from Thailand
• Addressing the Thai side
– Removing bias in load forecasting
– Consider clean, decentralized options on level playing field
• Addressing the Burma side
– Some clean community energy options
Outline
• Intro to world energy
– Energy history
– World energy situation
• Burma energy situation
– Energy exports to Thailand
– Energy for domestic use
• Renewable energy
– For village-scale applications
– For sale to main grid
• Addressing the Burma side
– Some clean community energy options
History of Human Energy Use
Energy source
Years in use
Comment
Solar energy + biomass
~ 2,000,000
Humans have relied on energy from sun &
plants since species began
Animal power
~ 7,500
Animals used for riding, hauling, and
cultivation
Water and wind power
~ 2,500
Travel by sail, wind and water used for
pumping, mechanical tasks
Steam engine / coal
~ 250
Industrial Revolution powered by steam
engines, abundant coal
Electric motors /
generators / grid
~ 125
Edison Pearl St Station, 1882; Tesla AC
motor/generator 1890s
Internal combustion
engine / oil
~ 125
Pennsylvania oil 1859; Benz/Otto ICE
vehicle 1885; Ford Model T 1908
Nuclear power
~ 50
Product of nuclear weapons development
in US, USSR
Modern renewables / low- ~ 25
carbon sources
California, Denmark, Germany, China
China, water-powered trip
hammer, Han Dynasty CA 200 BC
Watt steam engine ca. 1775
Edison Pearl Street Station - first electric distribution system, 1882
Benz automobile ca. 1886
Oil well, Pennsylvania, 1861
1850-2000
The rise ofWorld
globalEnergy
dependence
on fossil fuels
EJ/year
World primary energy supply, 1850-2000
500
450
400
350
300
250
200
150
100
50
0
1850 1875 1900 1925 1950 1975 2000
Gas
Oil
Coal
Nuclear
Hydro +
Biomass
Hydro+ means
hydropower plus
other renewables
besides biomass
Coal drove growth 1850-1950;Year
oil & gas drove it (2x faster) 1950-2000
In the USA…
Current world energy system
- the positive
• Cheap
• Convenient
• Mature technologies
Current world energy system the negative
• oil dependence
– price volatility, developing country debt,
resource conflict
• carbon emissions
– climate change
• growth in consumption
• Unequal distribution
– of consumption and impacts
Current Energy System
in a Nutshell
• Those “upwind, upstream, and
uptime” enjoy convenient services
at artificially low prices.
• Those “downwind, downstream,
and downtime” face the
consequences
Where we’re at
• progress is slow toward alternatives
– fossil fuels 90% in 1980, 86% in 2005
• change is difficult to achieve
– consumption habits, prices don’t reflect
externalities, vested interests
• time is short for transforming the system
– already happening: climate change, oil wars,
energy poverty, debt crises
Masters & Randolph, 2008
No Technological “Silver Bullet”
• oil and gas:
not enough resources
• coal:
not enough atmosphere
• biomass:
not enough land
• hydropower & wind:
not enough sites
• nuclear fission:
too unforgiving
• nuclear fusion:
too difficult
• Solar :
too expensive
• hydrogen:
not a “source”: needs energy to
produce it
• end-use efficiency:
needs end-users who are
paying attention
From John P. Holdren, “The Energy Innovation Imperative,” 2006
Elements of a solution
•
•
•
•
•
Sustainable energy technologies
Change markets
Change consumption behavior
Change policies
Change institutions
Sustainable energy
technologies
• Renewable Energy: making use of flows of
energy that are naturally replaced (wind,
sun, biomass)
Problems for renewables
•
•
•
•
•
Cost
Technical maturity
Technical fit
Geographic mismatch
Limits to renewability
World Wind Energy Growth
Source: World Wind Energy Association
World Biofuel Growth
WORLD PRIMARY ENERGY SUPPLY, 1970-2004
500
450
400
350
300
Hydroelectric
Nuclear
Natural Gas
250
NGPL
Petroleum
200
C oal
150
100
50
04
2
0
02
2
0
00
2
0
98
1
9
96
1
9
94
1
9
92
1
9
90
1
9
88
1
9
86
1
9
84
1
9
82
1
9
80
1
9
78
1
9
76
1
9
74
1
9
72
9
1
9
70
0
1
Quadrillion Btu
Renewable
SOURCE:
AER 2006
Energy situation in Burma (?)
• Energy shortages
– blackouts, fuel rationing
• High energy costs
• High human suffering from impacts of
large energy projects
– Large hydro
– Gas
• Unequal distribution of energy, of impacts
Big hydro
– for export to Thailand &
domestic use
• Used to make:
– 6% of Thailand’s electricity,
– 60% of Burma’s electricity (most dams
are in ethnic minority areas)
• Consensus: no more big dams will be
built in Thailand.
– Limited sites left in Thailand
– Strong environmental opposition…
– “Build in Burma instead!!!”
• Environmental issues
–
–
–
–
Inundation
Fish killed
Global warming
Changes in temperature / sediment
loading / flow regime
• Can be cheap
– If reasonably close to load centers
Planned megadams to export
electricity to Thailand
Tasang
7,000 MW
Yawatit
600 MW
Upper Salween
4,000 MW
Lower Salween
500 MW
Hut Gyi
1,200 MW
Tanaosri
720 MW
Natural gas
• Used to make 71% of Thailand’s
electricity (among highest in
world)
– 1/3 of gas used in Thailand comes
from Burma
– 20% of our (Thai) electricity bills pay
for Burmese gas
• Single largest source of revenue
to Burmese military government
– Accounts for fully half of Burma’s
exports in 2006
– US$2.16 billion to junta from
Thailand.
– Total, Chevron, PTTEP, Petronas,
Nippon Oil, etc.
Source: Burma: Foreign Investment
Finances Regime. Human Rights Watch.
2007.
www.hrw.org/english/docs/2007/10/01/bu
rma16995.htm
Rural electrification - Burma
• In 2008, 42.8 Million of Burma’s 58.82 million
population lived without electricity.
• Goal: electrification rates to 60% by 2020.
Diesel
Sell electricity to Thailand cheap,
buy back expensive
1 baht/kWh
8 baht/kWh
2 baht/kWh
Can we imagine something
different?
Cost of Energy (US cents/kWH)
Saving electricity is cheaper than
generating it
10.0
8.2
Demand Side Management (saving electricity)
8.0
6.0
4.9
5.0
5.1
5.2
Lowsulphur
coal w/o
FGD
Lowsulphur fuel
oil w/o
FGD
LNG
5.5
4.0
4.0
2.6
2.1
2.0
1.5
DSM
Hydro from
Gas
Lignite with
Laos
combined
FGD
cycle
Actual 10-year
DSM average
cost!!!
Lowsulphur
coal with
FGD
Nuclear
Type of Power Plant
Source: The World Bank (1993)
The Arun-3 story
• Planned 201 MW hydro in Nepal
• Sell electricity to India, rural electrification
• Nepalese NGOs and small business:
“Micro-hydropower cheaper, better for local
economy”
• World Bank pulled out of project, project
cancelled
• 10 years later…the Nepali power system has
seen the addition of:
– over a 1/3 more capacity than the Arun-3
– at ½ the cost
– In ½ the time it would have taken to complete Arun-3
Renewable energy fuels and uses
End use
Electricity
Off-grid
On-grid
Mech
power /
pumping
Gasifier
●
●
●
Biogas
●
●
●
Technology
Biomass
Cooking
Transportation
●
●
Steam
turbine
●
Direct
combustion
Biodiesel or
ethanol
Water
heating
●
●
●
Microhydro
●
●
●
Solar
●
●
●
Wind
●
●
●
●
●
●
1. Village and household scale
2. National scale (connecting
to national grid)
Biodiesel
Efficient Charcoal
Micro-hydroelectricity
Source: Inversin, A. R. (1986). Micro-Hydropower Sourcebook.
Hydraulic ram pump
www.agr.gc.ca
Hydraulic ram pump
Community
micro-hydro
• Mae Kam Pong village,
Chiang Mai
• 1x40 kW; 2x20 kW
• Community cooperative
• Sells electricity to the
national grid
Solar cooking
replace
LED lighting and
0.5-5W solar panels,
coupled with
microfinance energy
loans, can end
kerosene lighting
Barefoot Power is a
social enterprise
delivering such
solutions
Solar home systems
• 25,000
baht per
household
system
• 120 watts
• Electricity
for 2 lights
+ TV
FORTH
ส ภ า ว ะ ก า ร ทา ง า น
แ ผ ง พ ลั ง ง า น แ ส ง อ า ทิ ต ย์
SOLAR PRODUCT
ป ร ะ จุ แ บ ต เ ต อ รี่
โ ห ล ด / เ กิ น พิ กั ด โ ห ล ด
เ ต็ ม
ปานก ลาง
ต่า
SH-1210M
ส ภ า ว ะ แ บ ต เ ต อ รี่
เ ค รื่ อ ง ค ว บ คุ ม ก า ร ป ร ะ จุ แ บ ต เ ต อ รี่ แ ล ะ แ ป ล ง ก ร ะ แ ส ไ ฟ ฟ้ า
สา ห รั บ ร ะ บ บ พ ลั ง ง า น แ ส ง อ า ทิ ต ย์
แ บ ต เ ต อ รี่
แ ผ ง รั บ พ ลั ง ง า น
แ ส ง อ า ทิ ต ย์
ไ ฟ ฟ้ า ก ระแ ส ส ลั บ
220 โ ว ล ต์ 50 เ ฮิ รต ซ์
ส า ย ดิ น
L N
เ ปิ ด / ปิ ด
ป ลั๊ ก ไ ฟ ฟ้ า ก ร ะ แ ส ส ลั บ
220 โ ว ล ต์ 50 เ ฮิ รต ซ์
HaCo
HaCo
10A
ON
3K
D EEP CY CLE
EBB 125
3K THAI STORAGE BATTERY PUBLIC COMPANY LIMITED
~
Thai solar home systems
203,000 solar home systems
Sustainability challenge
Ruggedized solar electric systems built by
Karen medics in 3-5 day hands-on trainings
• 7 trainings (2003-2007)
• >90 medics trained
• 35 clinics
Solar for computer training centers
in seven Karen refugee camps
•1 kW PV hybrid with diesel generator
•Each powers 12 computers
Bangkok Solar 1 MW PV
• Project size: 1 MW
• Uses self-manufactured a-Si
Solar water heating
Biogas for cooking
Katchin State, Burma
http://www.palangthai.org/en/bsep
Reduces air and water pollution
Biogas from
Pig Farms
Produces fertilizer
Produces electricity
8 x 70 kW generator
Ratchaburi
Biogas from Pig
Farms
Korat Waste to Energy – biogas
… an early Thai VSPP project
• Uses waste water from cassava
to make methane
• Produces gas for all factory heat
(30 MW thermal) + 3 MW of
electricity
• 3 x 1 MW gas generators
Biomass Gasification
Rice mill in Nakorn Sawan
400 kW
Gasifier
electricity from wood
Rice husk-fired power plant
• 9.8 MW
• Roi Et, Thailand
$
Technical regulations:
• Allowable voltage,
frequency, THD
variations
• Protective relays
– 1-line diagrams for all
cases:
•
•
•
•
•
Induction
Synchronous
Inverters
Single/multiple
Connecting at different
voltage levels (LV or MV)
• Communication
channels
Commercial regulations:
• Definitions of
renewable energy, and
efficient cogeneration
• Cost allocation
• Principle of
standardized tariff
determination
• Invoicing and payment
arrangements
• Arbitration
+ Standardized Power Purchase Agreement (PPA)
Evolution of Thai VSPP regulations
• 2002
– VSPP regulations drafted, approved by Cabinet
– Up to 1 MW export, renewables only
– Tariffs set at avoided cost (bulk supply tariff + FT)
• 2006
– Up to 10 MW export, renewables + cogeneration
– Feed-in tariff “adder”
– If > 1 MW then utility only pays for 98% of energy
• 2009
– Tariff adder increase, more for projects that offset diesel
http://www.eppo.go.th/power/vspp-eng/ for English version of regulations, and model PPA
Thai VSPP feed-in tariff adders
Fuel
Adder
Additional for Additional for Years effective
diesel offsetting 3 southern
areas
provinces
Biomass
Capacity <= 1 MW
$ 0.015
$
0.030
$
0.030
Capacity > 1 MW
$ 0.009
$
0.030
$
0.030
Biogas
<= 1 MW
$ 0.015
$
0.030
$
0.030
> 1 MW
$ 0.009
$
0.030
$
0.030
Waste (community waste, non-hazardous industrial and not organic matter)
Fermentation
Thermal process
Wind
<= 50 kW
> 50 kW
Micro-hydro
50 kW - <200 kW
<50 kW
Solar
7
7
7
7
$ 0.074
$ 0.104
$
$
0.030
0.030
$
$
0.030
0.030
7
7
$ 0.134
$ 0.104
$
$
0.045
0.045
$
$
0.045
0.045
10
10
$ 0.024
$ 0.045
$ 0.238
$
$
$
0.030
0.030
0.045
$
$
$
0.030
0.030
0.045
7
7
10
Assumes exchange rate 1 Thai baht = 0.029762 U.S. dollars
Tariff
=
Biomass tariff =
adder(s) + bulk supply tariff + FT charge
$0.009 + $0.049
+ $0.027
= $0.085/kWh
July 2010
PPAs signed for
additional 4283 MW
847 MW online
Thailand VSPP Status
Decentralized generation
• Decentralized generation: generation of
electricity near where it is used
Old way
Power plant
New way
Power plant
Biomass
Wind power
Biomass
Customers
Energy efficient end-use
Solar
Energy waste in a typical pumping system
Sankey Energy Flow Diagram
Cogeneration
Combined Heat and Power (CHP)
Thank you
For more information, please contact
[email protected]
This presentation available at:
www.palangthai.org/docs