Clean, Affordable Decentralized Energy Options -- Burma Chris Greacen Palang Thai MEE-Net Seminar on Energy in Burma 24 Jan 2011 Chiang Mai.
Download ReportTranscript Clean, Affordable Decentralized Energy Options -- Burma Chris Greacen Palang Thai MEE-Net Seminar on Energy in Burma 24 Jan 2011 Chiang Mai.
Clean, Affordable Decentralized Energy Options -- Burma Chris Greacen Palang Thai MEE-Net Seminar on Energy in Burma 24 Jan 2011 Chiang Mai Outline • Intro to energy – Energy history – World energy situation – Renewable energy • Burma – Default scenarios – For revenue: Mega dams, gas exports – For electrification: dam & diesel generation, likely power imports from Thailand • Addressing the Thai side – Removing bias in load forecasting – Consider clean, decentralized options on level playing field • Addressing the Burma side – Some clean community energy options Outline • Intro to world energy – Energy history – World energy situation • Burma energy situation – Energy exports to Thailand – Energy for domestic use • Renewable energy – For village-scale applications – For sale to main grid • Addressing the Burma side – Some clean community energy options History of Human Energy Use Energy source Years in use Comment Solar energy + biomass ~ 2,000,000 Humans have relied on energy from sun & plants since species began Animal power ~ 7,500 Animals used for riding, hauling, and cultivation Water and wind power ~ 2,500 Travel by sail, wind and water used for pumping, mechanical tasks Steam engine / coal ~ 250 Industrial Revolution powered by steam engines, abundant coal Electric motors / generators / grid ~ 125 Edison Pearl St Station, 1882; Tesla AC motor/generator 1890s Internal combustion engine / oil ~ 125 Pennsylvania oil 1859; Benz/Otto ICE vehicle 1885; Ford Model T 1908 Nuclear power ~ 50 Product of nuclear weapons development in US, USSR Modern renewables / low- ~ 25 carbon sources California, Denmark, Germany, China China, water-powered trip hammer, Han Dynasty CA 200 BC Watt steam engine ca. 1775 Edison Pearl Street Station - first electric distribution system, 1882 Benz automobile ca. 1886 Oil well, Pennsylvania, 1861 1850-2000 The rise ofWorld globalEnergy dependence on fossil fuels EJ/year World primary energy supply, 1850-2000 500 450 400 350 300 250 200 150 100 50 0 1850 1875 1900 1925 1950 1975 2000 Gas Oil Coal Nuclear Hydro + Biomass Hydro+ means hydropower plus other renewables besides biomass Coal drove growth 1850-1950;Year oil & gas drove it (2x faster) 1950-2000 In the USA… Current world energy system - the positive • Cheap • Convenient • Mature technologies Current world energy system the negative • oil dependence – price volatility, developing country debt, resource conflict • carbon emissions – climate change • growth in consumption • Unequal distribution – of consumption and impacts Current Energy System in a Nutshell • Those “upwind, upstream, and uptime” enjoy convenient services at artificially low prices. • Those “downwind, downstream, and downtime” face the consequences Where we’re at • progress is slow toward alternatives – fossil fuels 90% in 1980, 86% in 2005 • change is difficult to achieve – consumption habits, prices don’t reflect externalities, vested interests • time is short for transforming the system – already happening: climate change, oil wars, energy poverty, debt crises Masters & Randolph, 2008 No Technological “Silver Bullet” • oil and gas: not enough resources • coal: not enough atmosphere • biomass: not enough land • hydropower & wind: not enough sites • nuclear fission: too unforgiving • nuclear fusion: too difficult • Solar : too expensive • hydrogen: not a “source”: needs energy to produce it • end-use efficiency: needs end-users who are paying attention From John P. Holdren, “The Energy Innovation Imperative,” 2006 Elements of a solution • • • • • Sustainable energy technologies Change markets Change consumption behavior Change policies Change institutions Sustainable energy technologies • Renewable Energy: making use of flows of energy that are naturally replaced (wind, sun, biomass) Problems for renewables • • • • • Cost Technical maturity Technical fit Geographic mismatch Limits to renewability World Wind Energy Growth Source: World Wind Energy Association World Biofuel Growth WORLD PRIMARY ENERGY SUPPLY, 1970-2004 500 450 400 350 300 Hydroelectric Nuclear Natural Gas 250 NGPL Petroleum 200 C oal 150 100 50 04 2 0 02 2 0 00 2 0 98 1 9 96 1 9 94 1 9 92 1 9 90 1 9 88 1 9 86 1 9 84 1 9 82 1 9 80 1 9 78 1 9 76 1 9 74 1 9 72 9 1 9 70 0 1 Quadrillion Btu Renewable SOURCE: AER 2006 Energy situation in Burma (?) • Energy shortages – blackouts, fuel rationing • High energy costs • High human suffering from impacts of large energy projects – Large hydro – Gas • Unequal distribution of energy, of impacts Big hydro – for export to Thailand & domestic use • Used to make: – 6% of Thailand’s electricity, – 60% of Burma’s electricity (most dams are in ethnic minority areas) • Consensus: no more big dams will be built in Thailand. – Limited sites left in Thailand – Strong environmental opposition… – “Build in Burma instead!!!” • Environmental issues – – – – Inundation Fish killed Global warming Changes in temperature / sediment loading / flow regime • Can be cheap – If reasonably close to load centers Planned megadams to export electricity to Thailand Tasang 7,000 MW Yawatit 600 MW Upper Salween 4,000 MW Lower Salween 500 MW Hut Gyi 1,200 MW Tanaosri 720 MW Natural gas • Used to make 71% of Thailand’s electricity (among highest in world) – 1/3 of gas used in Thailand comes from Burma – 20% of our (Thai) electricity bills pay for Burmese gas • Single largest source of revenue to Burmese military government – Accounts for fully half of Burma’s exports in 2006 – US$2.16 billion to junta from Thailand. – Total, Chevron, PTTEP, Petronas, Nippon Oil, etc. Source: Burma: Foreign Investment Finances Regime. Human Rights Watch. 2007. www.hrw.org/english/docs/2007/10/01/bu rma16995.htm Rural electrification - Burma • In 2008, 42.8 Million of Burma’s 58.82 million population lived without electricity. • Goal: electrification rates to 60% by 2020. Diesel Sell electricity to Thailand cheap, buy back expensive 1 baht/kWh 8 baht/kWh 2 baht/kWh Can we imagine something different? Cost of Energy (US cents/kWH) Saving electricity is cheaper than generating it 10.0 8.2 Demand Side Management (saving electricity) 8.0 6.0 4.9 5.0 5.1 5.2 Lowsulphur coal w/o FGD Lowsulphur fuel oil w/o FGD LNG 5.5 4.0 4.0 2.6 2.1 2.0 1.5 DSM Hydro from Gas Lignite with Laos combined FGD cycle Actual 10-year DSM average cost!!! Lowsulphur coal with FGD Nuclear Type of Power Plant Source: The World Bank (1993) The Arun-3 story • Planned 201 MW hydro in Nepal • Sell electricity to India, rural electrification • Nepalese NGOs and small business: “Micro-hydropower cheaper, better for local economy” • World Bank pulled out of project, project cancelled • 10 years later…the Nepali power system has seen the addition of: – over a 1/3 more capacity than the Arun-3 – at ½ the cost – In ½ the time it would have taken to complete Arun-3 Renewable energy fuels and uses End use Electricity Off-grid On-grid Mech power / pumping Gasifier ● ● ● Biogas ● ● ● Technology Biomass Cooking Transportation ● ● Steam turbine ● Direct combustion Biodiesel or ethanol Water heating ● ● ● Microhydro ● ● ● Solar ● ● ● Wind ● ● ● ● ● ● 1. Village and household scale 2. National scale (connecting to national grid) Biodiesel Efficient Charcoal Micro-hydroelectricity Source: Inversin, A. R. (1986). Micro-Hydropower Sourcebook. Hydraulic ram pump www.agr.gc.ca Hydraulic ram pump Community micro-hydro • Mae Kam Pong village, Chiang Mai • 1x40 kW; 2x20 kW • Community cooperative • Sells electricity to the national grid Solar cooking replace LED lighting and 0.5-5W solar panels, coupled with microfinance energy loans, can end kerosene lighting Barefoot Power is a social enterprise delivering such solutions Solar home systems • 25,000 baht per household system • 120 watts • Electricity for 2 lights + TV FORTH ส ภ า ว ะ ก า ร ทา ง า น แ ผ ง พ ลั ง ง า น แ ส ง อ า ทิ ต ย์ SOLAR PRODUCT ป ร ะ จุ แ บ ต เ ต อ รี่ โ ห ล ด / เ กิ น พิ กั ด โ ห ล ด เ ต็ ม ปานก ลาง ต่า SH-1210M ส ภ า ว ะ แ บ ต เ ต อ รี่ เ ค รื่ อ ง ค ว บ คุ ม ก า ร ป ร ะ จุ แ บ ต เ ต อ รี่ แ ล ะ แ ป ล ง ก ร ะ แ ส ไ ฟ ฟ้ า สา ห รั บ ร ะ บ บ พ ลั ง ง า น แ ส ง อ า ทิ ต ย์ แ บ ต เ ต อ รี่ แ ผ ง รั บ พ ลั ง ง า น แ ส ง อ า ทิ ต ย์ ไ ฟ ฟ้ า ก ระแ ส ส ลั บ 220 โ ว ล ต์ 50 เ ฮิ รต ซ์ ส า ย ดิ น L N เ ปิ ด / ปิ ด ป ลั๊ ก ไ ฟ ฟ้ า ก ร ะ แ ส ส ลั บ 220 โ ว ล ต์ 50 เ ฮิ รต ซ์ HaCo HaCo 10A ON 3K D EEP CY CLE EBB 125 3K THAI STORAGE BATTERY PUBLIC COMPANY LIMITED ~ Thai solar home systems 203,000 solar home systems Sustainability challenge Ruggedized solar electric systems built by Karen medics in 3-5 day hands-on trainings • 7 trainings (2003-2007) • >90 medics trained • 35 clinics Solar for computer training centers in seven Karen refugee camps •1 kW PV hybrid with diesel generator •Each powers 12 computers Bangkok Solar 1 MW PV • Project size: 1 MW • Uses self-manufactured a-Si Solar water heating Biogas for cooking Katchin State, Burma http://www.palangthai.org/en/bsep Reduces air and water pollution Biogas from Pig Farms Produces fertilizer Produces electricity 8 x 70 kW generator Ratchaburi Biogas from Pig Farms Korat Waste to Energy – biogas … an early Thai VSPP project • Uses waste water from cassava to make methane • Produces gas for all factory heat (30 MW thermal) + 3 MW of electricity • 3 x 1 MW gas generators Biomass Gasification Rice mill in Nakorn Sawan 400 kW Gasifier electricity from wood Rice husk-fired power plant • 9.8 MW • Roi Et, Thailand $ Technical regulations: • Allowable voltage, frequency, THD variations • Protective relays – 1-line diagrams for all cases: • • • • • Induction Synchronous Inverters Single/multiple Connecting at different voltage levels (LV or MV) • Communication channels Commercial regulations: • Definitions of renewable energy, and efficient cogeneration • Cost allocation • Principle of standardized tariff determination • Invoicing and payment arrangements • Arbitration + Standardized Power Purchase Agreement (PPA) Evolution of Thai VSPP regulations • 2002 – VSPP regulations drafted, approved by Cabinet – Up to 1 MW export, renewables only – Tariffs set at avoided cost (bulk supply tariff + FT) • 2006 – Up to 10 MW export, renewables + cogeneration – Feed-in tariff “adder” – If > 1 MW then utility only pays for 98% of energy • 2009 – Tariff adder increase, more for projects that offset diesel http://www.eppo.go.th/power/vspp-eng/ for English version of regulations, and model PPA Thai VSPP feed-in tariff adders Fuel Adder Additional for Additional for Years effective diesel offsetting 3 southern areas provinces Biomass Capacity <= 1 MW $ 0.015 $ 0.030 $ 0.030 Capacity > 1 MW $ 0.009 $ 0.030 $ 0.030 Biogas <= 1 MW $ 0.015 $ 0.030 $ 0.030 > 1 MW $ 0.009 $ 0.030 $ 0.030 Waste (community waste, non-hazardous industrial and not organic matter) Fermentation Thermal process Wind <= 50 kW > 50 kW Micro-hydro 50 kW - <200 kW <50 kW Solar 7 7 7 7 $ 0.074 $ 0.104 $ $ 0.030 0.030 $ $ 0.030 0.030 7 7 $ 0.134 $ 0.104 $ $ 0.045 0.045 $ $ 0.045 0.045 10 10 $ 0.024 $ 0.045 $ 0.238 $ $ $ 0.030 0.030 0.045 $ $ $ 0.030 0.030 0.045 7 7 10 Assumes exchange rate 1 Thai baht = 0.029762 U.S. dollars Tariff = Biomass tariff = adder(s) + bulk supply tariff + FT charge $0.009 + $0.049 + $0.027 = $0.085/kWh July 2010 PPAs signed for additional 4283 MW 847 MW online Thailand VSPP Status Decentralized generation • Decentralized generation: generation of electricity near where it is used Old way Power plant New way Power plant Biomass Wind power Biomass Customers Energy efficient end-use Solar Energy waste in a typical pumping system Sankey Energy Flow Diagram Cogeneration Combined Heat and Power (CHP) Thank you For more information, please contact [email protected] This presentation available at: www.palangthai.org/docs