DETECTION OF SUPEROXIDE WITH DMPO AND IMPROVED NITRONES Jeannette Vásquez Vivar, Ph.D. Medical College of Wisconsin Milwaukee, Wisconsin 53226 [email protected].
Download ReportTranscript DETECTION OF SUPEROXIDE WITH DMPO AND IMPROVED NITRONES Jeannette Vásquez Vivar, Ph.D. Medical College of Wisconsin Milwaukee, Wisconsin 53226 [email protected].
DETECTION OF SUPEROXIDE WITH DMPO AND IMPROVED NITRONES Jeannette Vásquez Vivar, Ph.D. Medical College of Wisconsin Milwaukee, Wisconsin 53226 [email protected] Outline • Chemical structures and names of superoxide spin traps • Superoxide spin trapping with cyclic nitrones Experimental considerations and applications • Quantification of superoxide from radical adduct data Sources of Superoxide and other Reactive Species •OH BH4-deficient NOS •NO Fe2+ NO2– NADPH Oxidase Cl-/Br- Mitochondria O2 Drug metabolism Aconitase O2•– + O2•– 2H+ Uric Acid •C(O)NH2 RSH HOCl HOBr MPO H2O2 NO XOD Xanthine 2 + O2 GSH/GPx ONOOGSSG CO2 Y Cys-SH Y• RS• CO3•– Cys-SOH Selection of the Spin Trap • Stable and easy to purify • Radical adduct is persistent • Radical adducts present distinctive EPR spectra • EPR spectra is simple Nitrones Commonly Used for Detection of Superoxide H3C H3C • DMPO 5,5-Dimethyl-1-pyrroline-N-oxide 2,2-Dimethyl-3,4-dihydro-2H-pyrrole 1-oxide • DEPMPO 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide 2-Diethylphosphono-2-methyl-3,4-dihydro-2H-pyrrole 1-oxide (2-Methyl-3,4-dihydro-1-oxide-2H-pyrrol-2-yl) diethylphosphonate • EMPO 2-Ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide 5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide • BMPO 5-Tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide N O O (EtO)2P H3 C O N O EtOC H3 C N O O t-BuOC H3C N O EPR Spin Trapping Detection of Superoxide with 5-Diethoxyphosphoryl-5-Methyl-1-Pyrroline N-oxide (DEPMPO) (EtO) 2(O)P H3C H N 2 min O O2•– H 15 min H OOH (EtO) 2(O)P H 3C N H 20 min O DEPMPO-OOH SOD DEPMPO-OH 20 G Frejaville et al. J Med Chem 1995, 38: 258 Application I: Detection of Hydroxyl radical in Superoxide-driven Reactions O OOH (EtO)2P H3C . O N Aconitase [4Fe-4S]2+ H (active) Aconitase [3Fe-4S]1+ O OH (EtO)2P H3C . N (inactive) H O g= 2.018 20 G Vásquez-Vivar et al. J Biol Chem 2000, 275:14064 EPR Spin Trapping Detection of Superoxide with DEPMPO Characteristics: • Unique EPR spectrum: cis- and trans-DEPMPO-OOH (1:9) and conformers exchange H3 C OOH H H (EtO)2(O)P O N H H H (EtO)2(O)P H O CH3 trans-DEPMPO • Formation of persistent superoxide adduct (t1/2~15 min) OOH H N H H H cis-DEPMPO • DEPMPO-OOH loss of signal is not followed by DEPMPO-OH appearance EPR Spin Trapping Detection of Superoxide with DEPMPO Limitations: • Substitution with 5-methyl group with 31P (I=1/2 and large hyperfine coupling constant ~49 G) decreases sensitivity ~0.2 nmol superoxide • Purification is difficult EPR Spin Trapping Detection of Superoxide with 5-Ethoxycarbonyl-5-Methyl-1-Pyrroline N-oxide (EMPO) and 15N-EMPO O EtOC O EtOC 15 H3C N H3C O N O O2•– O2•– EtO(O)C H3 C OOH 14 N H O OOH 15 N H O (14N) I=1 10 G EtO(O)C H3 C (15N) I=½ 10 G Olive et al. Free Radical Biol Med 1999, 28: 403 Zhang H et al.FEBS Lett 2000, 473: 58 EPR Spin Trapping Detection of Superoxide with EMPO Characteristics: • Distinctive EPR spectra EMPO-OOH composite of two conformers • EMPO-OOH is more persistent than DMPO-OOH • EMPO-OOH • Sensitivity: EMPO-OH 15N-EMPO Limitation: • Purification • t½< DEPMPO-OOH <0.05 nmoles superoxide>14N-EMPO Application II. Quantification of Superoxide from Nitric Oxide Synthase Electron acceptor Reduced FMN FAD O2•─ HEME BH4 L-Arg NADPH • Electron acceptors such as cytochrome c, lucigenin and NBT are directly reduced by NOS • In the case of redox-active compounds, this reaction increases superoxide generation • BH4 reduces cytochrome c Spin trapping is the ideal technique to detect superoxide from NOS Reductase Domain Oxygenase Domain Vásquez-Vivar et al. Methods in Enzymology 1999, 301: 169 L-Arginine, L-NAME and BH4 Effects on Superoxide Release from eNOS Ca2+/CaM EtO(O)C H3 C OOH 14 N H O L-Arg (0.1 mM) L-NAME (1.0 mM) 7,8-BH2 (0.1 mM) L-Arg/BH4 (2 µM) Vásquez-Vivar et al. Circulation 2000, 102: II-63 Tetrahydrobiopterin Coordinates the Inhibition of Superoxide and the Stimulation of NO Formation from eNOS 140 12 120 +L-Arginine 10 100 8 80 6 60 4 -L-Arginine 40 2 20 0 0 0.0001 0.001 0.01 0.1 1 10 nmol min-1 mg protein-1 14 •NO EMPO-OOH (nmoles min -1mg protein -1) 97.7 nmoles O2•– min-1 mg protein-1 BH4 IC50 0.15 µM 100 BH 4(mM) Vásquez-Vivar et al. Biochem J 2002, 362:733 EPR Spin Trapping Detection of Superoxide with BMPO O t-BuOC H3C N BH4-free nNOS O O2•– O t-BuOC H3C OOH N + BH4 (10 nM) H O Zhang et al Free Radical Biol Med 2001, 31:599 Porter et al. Chem Res Toxicol 2005, 18:864 Characteristics: • More persistent superoxide radical adducts • BMPO-OOH BMPO-OH • More sensitive measurements ~ 0.01 nmoles superoxide • Solid readily purified by recrystallization in MeOH Superoxide Spin Trapping in the Presence of ß-Cyclodextrins OR3 R2O Ramdom-ß-cyclodextrin (RM-ß-CD) R3O O O OR6 R2O OR2 O O OR3 OR6 O R2, R3, R6= H and CH3 R6O O O R3O OR6 O 6 R6O R6O R2O R6O O O OR2 Dimethyl-ß-cyclodextrin (DM-ß-CD) OR2 2 5 O O O O 1 4 3 OR3 R2,R6=CH3 R3 =H OR2 R3O R3O Bardelang et al. J Phys Chem B 2005, 109: 10521 Karoui et al. Chem Commun 2002, 24: 3030 Hydrophobic core OOH OOH 6.5 A N H3 H3 H5 OOH N O H5 O H3 O C O 6A O C O H5 R H3 H3 H5 H5 N O O H5 C O R R H3 Superoxide Spin Trapping with BMPO in DM-ß-Cyclodextrin Containing Solutions O O Control 6 mM t-BuOC t-BuOC H3C OOH N H H3C O O 12 mM N KNITROXIDE =660 M-1 KNITRONE =230 M-1 25 mM 100 mM H3 H3 H5 H5 10 G BMPO-OOH / DM-b-CD Karoui et al. EPR-2005 Abstracts 2005, 1:45 Properties of the Superoxide Radical Adduct and in ß-Cyclodextrin Inclusion Complex Characteristics: • Enhanced persistence Superoxide Radical Adduct t½ (min) DMPO-OOH EMPO-OOH DEPMPO-OOH 0.8 4.6 14.0 Inclusion complex t½ (min) DMPO-OOH/RM-ß-CD 5.9 EMPO-OOH/ RM-ß-CD ~38.0 DEPMPO-OOH/ RM-ß-CD 96.0 • Protection against reduction (Ascorbate, GSH, GSH/GPx) EMPO>DEPMPO>DMPO-OOH Limitations: • Changes in hyperfine coupling constant of the radical adduct in inclusion complex Bardelang et al. J Phys Chem B 2005, 109: 10521 Karoui & Tordo Tetrahedron Lett. 2004, 45:1043 Quantification of Superoxide Using Spin Trapping Methodology Considerations: • Spin trapping is a kinetic method • Calibration curve • Baseline • Simulation and identification of radical adduct species Superoxide Spin Trapping: Kinetic Analysis BIOLOGICAL PROCESS (E) k1 Nitrone + O •– 2 k2 P kd [Nitroxide-OOH] k3 Other d ( Nitroxide OOH ) k2 ( Nitrone)(O2 ) [k3 ( Nitroxide OOH ) kd ( Nitroxide OOH )2 ] dt Under steady-state concentrations of superoxide and saturating concentrations of the nitrone, then d (O2 ) k1 ( E ) k2 ( Nitrone)(O2 ) 0 dt and, thus, k2 ( Nitrone)(O2 ) k1( E ) d ( Nitroxide OOH ) k1 ( E ) [k3 ( Nitroxide OOH ) kd ( Nitroxide OOH )2 ] dt Quantification of Superoxide Using Spin Trapping Methodology A. Data acquisition: i. Static scanning of spectra- 2D data set ii. Rapid scan of spectra- 3D data set Kinetics of DMPO-OOH formation in incubations containing DMPO (10 mM), Xanthine (0.5 mM), Xanthine Oxidase (50 mU/ml) in phosphate buffer 50 mM, pH 7.4 and DTPA 0.1 mM. #Scans=100, time<4 s EPR Spectra after SVD (identification total components and isolation of the main component) and Spectral Analysis Keszler et al. Free Radical Biol Med 2003, 35:1149 Calculating Initial Rates of Superoxide Radical Adduct Formation B. Standard reactions- known rates of superoxide flux (µM/min) - Xanthine Oxidase and hypoxanthine, xanthine or acetaldehyde - Spin trap concentration (10-100 mM), buffers (concentration, pH) C. Simulation and integration - Corrects baseline - Identify major component of analysis D. Calculating initial rates of superoxide radical formation - Use results with standard reaction to calculate superoxide concentration Superoxide Radical Adduct Data Analysis: Simulation - Simulation rationale: correction baseline drifting and analysis of one species only. Public EPR Software (WinSim) Table I. EPR Parameters of Superoxide Radical Adducts Radical Adduct Conformers (%) Hyperfine coupling constant (G) aN aHß aH aP aH DMPO-OOH 67 33 14.15 14.09 11.34 11.78 1.58 0.17 - - [14N] EMPO-OOH 54 46 12.8 12.8 12.1 8.6 0.15 - - - [15N] EMPO-OOH 55 45 17.9 17.8 12.0 8.7 0.3 - - BMPO-OOH 55 45 13.4 13.37 12.1 9.42 - - - DEPMPO-OOH 50 50 13.4 13.2 11.9 10.3 0.8 0.9 52.5 48.5 0.4 0.43 - References-I • Bardelang et al. (2005) Inclusion complexes of PBN-type nitrones spin traps and their superoxide spin adducts with cyclodextrin derivatives: parallel determination of the association constants by NMR-titrations and 2D-EPR simulations. J Phys Chem B 109: 10521-10530 • Clement et al. (2005) Assignment of the EPR spectrum of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) superoxide spin adduct. J Org Chem 70:1198-1203 • Clement et al. (2003) Deuterated analogues of the free radical trap DEPMPO: synthesis and EPR studies. Org Biomol Chem 1:1591-1597 • Frejaville et al. (1995) 5-(Diethoxyphosphory)l-5methyl-1-pyrroline N-oxide: A new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen centered radicals. J Med Chem 38: 258-265 • Keszler et al. (2003) Comparative investigation of superoxide trapping by cyclic nitrone spin traps: the use of singular value decomposition and multiple linear regression analysis. Free Radical Biol Med 35:1149-1157 • Karoui & Tordo (2004) ESR-spin trapping in the presence of cyclodextrins. Tetrahedron Lett. 45:1043-1045 • Karoui et al. (2002) Spin trapping of superoxide in the presence of ß- cyclodextrins. Chem Commun 24: 3030-3031 • Olive et al. (1999) 2-Ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide: evaluation of the spin trapping properties Free Radical Biol Med 28: 403-408 References-II • Porter et al. (2005) Reductive activation of Cr(VI) by nitric oxide synthase. Chem Res Toxicol 18:864-843 • Roubaud et al. (1997) Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide. Anal Biochem 247: 404-411 • Vásquez-Vivar et al. (1999) ESR Spin-trapping detection of superoxide generated by neuronal nitric oxide synthase. In: Methods in Enzymology 301: 169-177. • Vásquez-Vivar et al. (2000) Mitochondrial aconitase is a source of hydroxyl radical. J Biol Chem 275:14064-14069 • Vásquez-Vivar et al. (2000) EPR spin trapping of superoxide from nitric oxide synthase Analusis (Eur J Anal Chem) 28: 487-492 • Vásquez-Vivar et al. (2000) BH4/BH2 ratio but not ascorbate controls superoxide and nitric oxide generation by eNOS. Circulation 102: II-63 • Vasquez-Vivar et al. (2002) The ratio between tetrahydrobiopterin and oxidized tetrahydrobiopterin analogues controls superoxide release from endothelial nitric oxide synthase: an EPR spin trapping study. Biochem J 362:733-739 • Zhang H et al. (2000) Detection of superoxide anion using an isotopically labeled nitrone spin trap: potential biological applications. FEBS Lett 473: 58-62 • Zhao et al. (2001) Synthesis and biochemical applications of a solid cyclic nitrone spin trap: a relatively superior spin trap for detecting superoxide anions and glutathiyl radicals. Free Radical Biol Med 31:599-606 Public EPR Software and Data Base: http://epr.niehs.nih.gov/pest.html Acknowledgements • B. Kalyanaraman • Joy Joseph • Hakim Karoui • Neil Hogg • Hao Zhang • Hongtao Zhao • Medical College of Wisconsin: Free Radical Research Center National Biomedical EPR Center