Video Coding For Compression . . . and Beyond Bernd Girod Information Systems Laboratory Department of Electrical Engineering Stanford University.
Download ReportTranscript Video Coding For Compression . . . and Beyond Bernd Girod Information Systems Laboratory Department of Electrical Engineering Stanford University.
Video Coding For Compression . . . and Beyond Bernd Girod Information Systems Laboratory Department of Electrical Engineering Stanford University Bit Consumption of US Households Bit equivalent, assuming state-of-the-art compression, year 2000 Total for 70M households ~230 Exabyte/year Television 94% Radio 1.7% Recorded Music 0.4% Newspaper 0.0003% Books 0.0002% Magazines 0.0002% Home video 3.3% Video games 0.6% Internet 0.0003% [Source: UC Berkeley: How much Information] Bernd Girod: Video Coding for Compression and Beyond 2 Desirable Compression Ratios SDTV broadcasting ~2 Mbps ITU-R 601 166 Mbps ~ 100 : 1 DSL ~ 1,000 : 1 ~200 kbps CIF Dial-up modem, wireless link ~ 10,000 : 1 ~ 20 kbps QCIF Bernd Girod: Video Coding for Compression and Beyond 3 Outline Video compression – state-of-the-art Beyond compression – Rate-scalable video – Wavelet video coding – Error-resilient video transmission – Unequal error protection – Optimal scheduling for packet networks – Distributed video coding Bernd Girod: Video Coding for Compression and Beyond 4 Outline Video compression – state-of-the-art Beyond compression – Rate-scalable video – Wavelet video coding – Error-resilient video transmission – Unequal error protection – Optimal scheduling for packet networks – Distributed video coding Bernd Girod: Video Coding for Compression and Beyond 5 “It has been customary in the past to transmit successive complete images of the transmitted picture.” [...] “In accordance with this invention, this difficulty is avoided by transmitting only the difference between successive images of the object.” Bernd Girod: Video Coding for Compression and Beyond 6 Motion-Compensated Hybrid Coding Coder Control Video in Control Data Transform/ Quantizer Decoder Quant. Transf. coeffs Deq./Inv. Transform Entropy Coding 0 Intra/Inter MotionCompensated Predictor Motion Data Motion Estimator Standards: H.261, MPEG-1, MPEG-2, H.263, MPEG-4, H.264/AVC Bernd Girod: Video Coding for Compression and Beyond 7 Motion-Compensated Hybrid Coding Coder Control Video in Control Data Transform/ Quantizer Decoder Quant. Transf. coeffs Deq./Inv. Transform Entropy Coding 0 Intra/Inter MotionCompensated Predictor Motion Data Motion Estimator ¼-pixel accuracy Standards: H.261, MPEG-1, MPEG-2, H.263, MPEG-4, H.264/AVC Bernd Girod: Video Coding for Compression and Beyond 8 Motion-Compensated Hybrid Coding Coder Control Video in Control Data Transform/ Quantizer Decoder Quant. Transf. coeffs Deq./Inv. Transform Entropy Coding 0 Intra/Inter MotionCompensated Predictor Adaptive blockMotion sizes Motion Estimator ... Data Standards: H.261, MPEG-1, MPEG-2, H.263, MPEG-4, H.264/AVC Bernd Girod: Video Coding for Compression and Beyond 9 Motion-Compensated Hybrid Coding Coder Control Video in Control Data Transform/ Quantizer Decoder Quant. Transf. coeffs Deq./Inv. Transform Entropy Coding 0 Intra/Inter MotionCompensated Predictor Motion Frames Multiple Past Reference Data Motion Estimator Standards: H.261, MPEG-1, MPEG-2, H.263, MPEG-4, H.264/AVC Bernd Girod: Video Coding for Compression and Beyond 10 Motion-Compensated Hybrid Coding Coder Control Video in Control Data Transform/ Quantizer Decoder Quant. Transf. coeffs Deq./Inv. Transform Entropy Coding 0 Intra/Inter MotionCompensated Predictor Motion Data Motion Estimator Generalized B-Frames Standards: H.261, MPEG-1, MPEG-2, H.263, MPEG-4, H.264/AVC Bernd Girod: Video Coding for Compression and Beyond 11 Rate-Distortion Optimized Coder Control Minimize Lagrangian cost function J D l R Di l Ri J i i Total distortion Total bit-rate Distortion for block i i Rate for block i Lagrangian cost for block i Strategy: minimize Ji for each block i separately, using a common Lagrange multiplier l Bernd Girod: Video Coding for Compression and Beyond 12 Multiple Reference Frames in H.264/AVC PSNR Y [dB] Mobile & Calendar (CIF, 30 fps) 38 37 36 35 34 33 32 31 30 29 28 27 26 0 ~15% PBB... with generalized B pictures PBB... with classic B pictures PPP... with 5 previous references PPP... with 1 previous reference 1 2 R [Mbit/s] Bernd Girod: Video Coding for Compression and Beyond 3 4 13 Multiple Reference Frames in H.264/AVC PSNR Y [dB] Mobile & Calendar (CIF, 30 fps) 38 37 36 35 34 33 32 31 30 29 28 27 26 0 >25% PBB... with generalized B pictures PBB... with classic B pictures PPP... with 5 previous references PPP... with 1 previous reference 1 2 R [Mbit/s] Bernd Girod: Video Coding for Compression and Beyond 3 4 14 Multiple Reference Frames in H.264/AVC PSNR Y [dB] Mobile & Calendar (CIF, 30 fps) 38 37 36 35 34 33 32 31 30 29 28 27 26 0 ~40% PBB... with generalized B pictures PBB... with classic B pictures PPP... with 5 previous references PPP... with 1 previous reference 1 2 R [Mbit/s] Bernd Girod: Video Coding for Compression and Beyond 3 4 15 Outline Video compression – state-of-the-art Beyond compression – Rate-scalable video – Wavelet video coding – Error-resilient video transmission – Unequal error protection – Optimal scheduling for packet networks – Distributed video coding Bernd Girod: Video Coding for Compression and Beyond 16 Surprising Success of ITU-T Rec. H.263 What H.263 was developed for . . . . . . and what is was used for. ?? Analog videophone Internet video streaming Bernd Girod: Video Coding for Compression and Beyond 17 Internet Video Streaming Streaming client DSL Media Server Internet dial-up modem wireless How to accommodate heterogeneous bit-rates? How to react to network congestion? How to mitigate late or lost packets? Bernd Girod: Video Coding for Compression and Beyond 18 Fine Granular Scalability (FGS) Efficiency gap Enhancement layer variable bit-rate ~2dB gap Base layer 20 kbps Bernd Girod: Video Coding for Compression and Beyond H.264 with/without FGS option Foreman sequence (5fps) 19 Wavelet Video Coder Original video frames 0 1 2 3 4 5 6 7 LH HHH H H H H LH LLL Temporal Wavelet Transform H HH HH H H H LLH Spatial Wavelet Transform Embedded Quantization & Entropy Coding [Taubman & Zakhor, 1994] [Ohm, 1994] [Choi & Woods, 1999] [Hsiang & Woods, VCIP ’99] . . . and others Bernd Girod: Video Coding for Compression and Beyond 20 Lifting Even Frames Analysis: P G0 Low Band G1 High Band U Odd Frames Motion Compensation Even Frames Synthesis: P Low Band G11 High Band U Odd Frames [Secker & Taubman, 2001] G01 [Popescu & Bottreau, 2001] Bernd Girod: Video Coding for Compression and Beyond 21 MC Wavelet Coding vs. H.264/AVC 38 Luminance PSNR (dB) 36 34 Non-scalable H.264/AVC 32 30 28 26 Scalable MC 5/3 Wavelet 24 Sequence: Mobile CIF H.264/AVC • high complexity RD control 22 • CABAC • PBBPBBP . . . • 5 prev/3 future reference frames • data courtesy of M. Flierl 20 0.2 0.4 0.6 0.8 1.0 1.2 1.4 bit-rate (Mbps) Bernd Girod: Video Coding for Compression and Beyond 1.6 1.8 2.0 [Taubman & Secker, VCIP 2003] courtesy D. Taubman 22 Wavelet Synthesis with Lossy Motion Vector Video in MC Wavelet Transform Embedded Encoding Inverse Wavelet Transform Decoder Video out Minimize J=D+lR d Motion Estimator Embedded Encoding Decoder d Minimize J=D+lR [Taubman & Secker, ICIP03] Bernd Girod: Video Coding for Compression and Beyond 23 R-D Performance with Lossy Motion Vector 40 Video PSNR (dB) 38 Non-embedded single-rate 36 34 Embedded wavelet coefficients Lossless motion 32 30 28 Embedded wavelet coefficients Lossy motion CIF Foreman 26 24 0 200 400 600 800 1000 1200 Bit -Rate (kbps) [Taubman & Secker, VCIP 2003] courtesy D. Taubman Bernd Girod: Video Coding for Compression and Beyond 24 Outline Video compression – state-of-the-art Beyond compression – Rate-scalable video – Wavelet video coding – Error-resilient video transmission – Unequal error protection – Optimal scheduling for packet networks – Distributed video coding Bernd Girod: Video Coding for Compression and Beyond 25 Priority Encoding Transmission (PET) base layer enhancement layer packet network K … Reed-Solomon codeword information symbols N-K block of packets redundancy symbols [Albanese, Blömer, Edmonds, Luby, Sudan, 1996] [Horn, Stuhlmuller, Link, Girod, 1999] [Mohr, Riskin, Ladner, 2000] [Chou, Wang, Padmanabhan, 2003] Bernd Girod: Video Coding for Compression and Beyond [Davis & Danskin, 1996] [Puri, Ramchandran, 1999] [Stankovic, Hamzaoui, Xiong, 2002] . . . and many more . . . 26 Packet Delay Jitter and Loss pdf (1e) e loss loss probability probability loss k lead-time lead-time Bernd Girod: Video Coding for Compression and Beyond delay 27 Smart Prefetching Idea: Send more important packets earlier to allow for more retransmissions Server Client Updated Packet Schedule Video packets Rate-distortion preamble Request Packet stream Schedule Internet [Podolsky, McCanne, Vetterli 2000] [Miao, Ortega 2000] [Chou, Miao 2001] Bernd Girod: Video Coding for Compression and Beyond 28 Rate-Distortion Preamble I I I B P B P B P I B P B P B P … … … Each media packet n is labeled by − Bn — size [in bits] of data unit n − Ddn —distortion reduction if n is decoded − tn — decoding deadline for n Bernd Girod: Video Coding for Compression and Beyond 29 Rate-Distortion Preamble I I I B P B P B P I B P B P B P … … … Each media packet n is labeled by − Bn — size [in bits] of data unit n − Ddn —distortion reduction if n is decoded − tn — decoding deadline for n Bernd Girod: Video Coding for Compression and Beyond For video: Ddn must be made “state-dependent” to accurately capture concealment 30 Markov Decision Tree for One Packet ack: 1 ack: 1 send: 1 send: 1 1 0 0 0 0 0 “Policy“ minimizing J0= D + lR 1 0 1 0 1 send: 1 0 0 0 ... N transmission opportunities before deadline 1 0 0 Observation Action tcurrent tcurrent+Dt tcurrent+2Dt Bernd Girod: Video Coding for Compression and Beyond 31 Foreman 120 frames 10 fps, I-P-P-… H.263+ 2 Layer SNR scalable 20 frame GOP Copy Concealment 20 % loss forward and back Γ-distributed delay – κ = 10 ms – μ = 50 ms – σ = 23 ms Pre-roll 400ms PSNR [dB] R-D Optimized Streaming Performance 31 R-D Optimized Prioritized ARQ 30 29 28 ~50 % 27 26 25 24 40 60 80 100 120 140 Bit-Rate [kbps] Bernd Girod: Video Coding for Compression and Beyond 32 Naive Coding Questions 1. To achieve graceful degradation in case of channel error for a digitally encoded signal, is an embedded signal representation (aka layers, aka data partitioning) always needed? 2. Can one, in general, send refinement information for an analog (i.e. uncoded) signal transmission over a noisy channel? Bernd Girod: Video Coding for Compression and Beyond 33 Digitally Enhanced Analog Transmission Analog Channel (uncoded) Side info WynerZiv Encoder Digital Channel WynerZiv Decoder Forward error protection of the signal waveform Information-theoretic bounds [Shamai, Verdu, Zamir,1998] “Systematic lossy source-channel coding” Bernd Girod: Video Coding for Compression and Beyond 34 Forward Error Protection of Compressed Video Analog channel (uncoded) Any Old Video Encoder Wyner-Ziv Encoder A Video Decoder with Error Concealment Error-Prone channel S Wyner-Ziv Encoder B S’ Wyner-Ziv Decoder A S* Wyner-Ziv Decoder B S** [Aaron, Rane, Girod, ICIP 2003] Graceful degradation without a layered signal representation Bernd Girod: Video Coding for Compression and Beyond 35 Wyner-Ziv MPEG Codec main MPEG Encoder ED Q -1 -1 T S* + MC Reconstructed Frame at Encoder Channel S ED q-1 -1 T S’ + MC MPEG Encoder R-S Encoder R-S Decoder coarse Slepian-Wolf Encoder Wyner-Ziv Encoder Bernd Girod: Video Coding for Compression and Beyond Side information MPEG Encoder coarse [Rane, Aaron, Girod, VCIP 2004] 36 Graceful Degradation with Forward Error Protection Main Stream @ 1.092 Mbps FEC (n,k) = (40,36) FEC bitrate = 120 Kbps Total = 1.2 Mbps WZ Stream @ 270 Kbps FEP (n,k) = (52,36) WZ bitrate = 120 Kbps Total = 1.2 Mbps Bernd Girod: Video Coding for Compression and Beyond 37 Visual Comparison of Degradation at Same PSNR Foreman 50 CIF frames @ symbol error rate = 4 x 10-4 With FEC 1 Mbps + 120 kbps (38.32 db) Bernd Girod: Video Coding for Compression and Beyond With FEP 1 Mbps + 120 kbps (38.78 db) 38 Superior Robustness of FEP Foreman 50 CIF frames @ symbol error rate = 10-3 With FEC 1 Mbps + 120 kbps (33.03 db) Bernd Girod: Video Coding for Compression and Beyond With FEP 1 Mbps + 120 kbps (38.40 db) 39 Lossy Compression with Side Information Source X Encoder Decoder X' Y Y [Wyner, Ziv, 1976] For mse distortion and Gaussian statistics, rate-distortion functions of the two systems are the same. Source X Encoder Decoder X' Y Y Bernd Girod: Video Coding for Compression and Beyond Y 40 Ultra-Low-Complexity Video Coding Interframe Decoder Intraframe Encoder WZ frames Slepian-Wolf Codec Scalar Quantizer X K Buffer Turbo Decoder Request bits Key frames Turbo Encoder Conventional Intraframe coding Reconstruction X’ Y Conventional Intraframe decoding Interpolation/ Extrapolation K’ [Aaron, Zhang, Girod, Asilomar 2002] [Aaron, Rane, Zhang, Girod, DCC 2003] Bernd Girod: Video Coding for Compression and Beyond 41 R-D Performance Ultra-Low-Complexity Video Coder 3 dB 8 dB Bernd Girod: Video Coding for Compression and Beyond Sequence: Foreman WZ frames - even frames Key frames - odd frames Side information - motion compensated interpolation of key frames 42 Ultra-Low-Complexity Video Coder H263+ Intraframe Coding 330 kbps, 32.9 dB Bernd Girod: Video Coding for Compression and Beyond Wyner-Ziv Codec 274 kbps, 39.0 dB 43 Ultra-Low-Complexity Video Coder H263+ I-B-I-B 276 kbps, 41.8 dB Bernd Girod: Video Coding for Compression and Beyond Wyner-Ziv Codec 274 kbps, 39.0 dB 44 Stanford Camera Array Bernd Girod: Video Coding for Compression and Beyond Courtesy Marc Levoy, Stanford Computer Graphics Lab 45 Stanford Camera Array Courtesy Marc Levoy, Stanford Computer Graphics Lab Bernd Girod: Video Coding for Compression and Beyond 46 Light Field Compression Wyner-Ziv, Pixel-Domain JPEG-2000 Rate: 0.11 bpp PSNR 39.9 dB Rate: 0.11 bpp PSNR 37.4 dB Bernd Girod: Video Coding for Compression and Beyond 47 Conclusions Video compression is very important . . . but there is more to video coding than compression Rate-scalable video representations: mc lifting break-through Robust video transmission – Virtual priority mechanisms by packet scheduling – RD gains easily larger than from super-clever compression Distributed video coding: radically different approach – Graceful degradation w/o layers – Ultra-low-complexity coders Ubiquitous J=D+lR Bernd Girod: Video Coding for Compression and Beyond 48 Acknowledgments Anne M. Aaron Jacob Chakareski Philip A. Chou J=D+lR Markus Flierl Sang-eun Han Mark Kalman Marc Levoy Yi Liang Shantanu Rane David Rebollo-Monedero Andrew Secker David Taubman Thomas Wiegand Xiaoqing Zhu Rui Zhang Progress is a wonderful thing, if only it would stop . . . Robert Musil