Chemistry of Aromatic Compounds Electrophilic Aromatic Substitution Directing Effects Side-chain Reactions Synthesis Nucleophilic Aromatic Substitution Electrophilic Aromatic Substitution E H E H :base E + H-base.
Download ReportTranscript Chemistry of Aromatic Compounds Electrophilic Aromatic Substitution Directing Effects Side-chain Reactions Synthesis Nucleophilic Aromatic Substitution Electrophilic Aromatic Substitution E H E H :base E + H-base.
Chemistry of Aromatic Compounds Electrophilic Aromatic Substitution Directing Effects Side-chain Reactions Synthesis Nucleophilic Aromatic Substitution Electrophilic Aromatic Substitution E H E H :base E + H-base EAS Reactions of Benzene NO2 CHO Cl O CR Br R I SO3H Bromination / Chlorination H Br2, FeBr3 Br + HBr H Cl2, FeCl3 Cl + HCl Bromination Mechanism Reaction Profile Nitration NO2 + H2O HNO3, H2SO 4 Formation of e le ctroph ile HNO3 + H2SO 4 + - NO2 + H2O + HSO4 Nitration Mechanism Nitration of Toluene Sulfonation is Reversible H fuming sulfuric acid SO 3, H2SO 4 O S O O H OSO3H SO 3H H OSO 3H SO 3H Desulfonation Friedel-Crafts Acylation O O RCCl, AlCl3 C R + HCl 1st, Formaton of Electrophile O C R O + Cl AlCl3 C R R acylium ion C O AlCl4 Acylation Mechanism O C R O C H R Cl AlCl3 O C R + HCl Intermediate is Resonance-Stabilized O O O C C C H R H R H R An Acylation CH3 O CH3 CCH2CH2CH2CH3 CH3CH2CH2CH2CCl + HCl T iCl4 in CH2Cl2 CH3 O CH3 Friedel-Crafts Alkylation many more limitations RX, AlCl3 R + HCl Mechanism CH3 CH3 C CH3 Cl AlCl3 CH3 C CH3 CH3 CH3 C AlCl4 CH3 t-butyl carbocation (CH3)3C (CH3)3C (CH3)3C H CH3 resonance stabilized intermediate Cl AlCl3 (CH3)3C + HCl (+ AlCl3) Carbocation Generated From Alkene Unexpected Product? CH2CH2CH2CH3 CH3CH2CH2CH2Cl, AlCl3 minor product CH3 CHCH2CH3 major product Carbocations Rearrange… H CH3CH2CH2CH2 Cl AlCl3 CH3CH2CHCH2 o 1 hydride shift CH3CH2CHCH3 2o 1o RX Typically Undergoes Shift Side Chain Reactions 1) Reduction of Aromatic Ketones O H2, Pd/C in ethanol Straight-chain Alkylation can be Accomplished in 2 steps: Acylation, then Reduction CH3CH2CH2Cl AlCl3 O CH3CH2CCl AlCl3 CH2CH2CH3 minor + H2, Pd/C O CCH2CH3 CH(CH3)2 major 2) Oxidation of Alkyl Substituents O CH3 COH KMnO4, H2O CO 2H KMnO4 H 2O CH3 CO2H KMnO4, H2O CH(CH3)2 CO 2H 3) Benzylic Bromination with NBS benzylic hydrogen H Br NBS, CCl4, h O NBS NBr O 4) Alkali Fusion of Sulfonic Acids SO3H OH o 1) NaOH, 300C + 2) H3O phe n ol 5) Reduction of Nitro Groups NO2 1) SnCl2, HCl 2) NaOH or H2 on Pt NH2 Directing Effects EDG electron donating groups activate ring atom attached is usually sp 3 EWG electron withdrawing groups de activate ring at om at t ached is 2 or sp usually sp ortho/para-Directing Activating Groups OCH3 OCH3 OCH3 + OCH3 - - OCH3 Nitration of Anisole Nitration Affords ortho and para Products OCH3 OCH3 OCH3 NO2 HNO3, H2SO 4 + ortho para NO2 Activating ortho/para directors Nitration of Toluene meta-Directing Deactivating Groups O O O O CH CH CH CH O CH + + + ortho and para positions are de activate dt oward EAS Electron-Withdrawing Nitro Group Directs meta meta Directors Comparison CH3 Brom in ate d produ ct ortho meta 63 3 para 34 25 rat e rel. to benzene Br2, FeBr3 CF3 rel. rat e ortho meta 6 91 para 3 0.000025 More Limitations with Friedel Crafts Reactions Ring must be at least as act ivat ed (reactive) as Cl CH3CH2Cl, T iCl4 O NO2 ClCCH3, AlCl3 Cl + ortho CH2CH3 No Re acti on Substituent Summary Halogens are the Anomoly Deactivators and o,p-Directors Br Br CH3CH2Cl Br CH2CH3 + AlCl3 rel. rate = 0.5 CH2CH3 Inductive ly withdrawing, he nce de activating Re sonance donation cause s o,p dire cting Reactions of Rings With Two or More Substituents Activating Group Controls Reaction OCH3 OCH3 Cl Cl2, FeCl3 NO2 NO2 The (More) Activated Ring Reacts SO 3 H2SO 4 O CO deactivated activated O CO SO3H * (+ some ortho) Mixtures with Conflicting Directing Effects Provide the Reagents NH2 C(CH3)3 Br Must Acylate First NH2 O ClCCH2CH2CH2CH3 AlCl3 H2, P t /C NO2 HNO3 H2SO 4 O meta direct or O Sulfonic Acid Blocks para Position C(CH ) 3 3 Br H (CH3)3CBr AlCl3 C(CH3)3 C(CH3)3 SO 3, H2SO 4 H 3O + C(CH3)3 Br Br2, FeBr3 blocks para SO3H SO3H Give the Reagents CO2H CH3 Cl O Provide the Reagents CH2CH3 Br OH O CH2CH3 1) ClCCH3, AlCl3 2) SO3, H2SO 4 3) Br2, FeBr3 Br 4) H2 P d/C o 5) NaOH, 300 C + 6) H3O 1) O O 2) OH 5,6) O 3) SO 3H 4) Br SO3H Br SO 3H Provide the Reagents HO2C Cl HO2C 1) AlCl3 2) Cl O AlCl3 3) KMnO4, H2O 6) workup w/ + H3O HO2C 4) H2, P d/C 5) NBS, h 6) NaOCH3 in CH3OH, heat (E2 elim of HBr) HO2C 1) Br 5) HO2C 3) 2) O 4) O Nucleophlic Aromatic Substitution Not an SN1 Not an SN2 “SNA” criteria: • Strongly deactivated ring • Leaving group • Deactivating group(s) ortho &/or para to leaving group (preferably) • Strong base (nucleophile) such as RO-, NH2- Methoxide as a nucleophile Mechanism O Cl OCH3 O OCH3 + Cl O O O Cl O O OCH3 O Cl OCH3 With no EWG, reaction conditions are more extreme Elimination/Addition Mechanism “Benzyne” Intermediate Carbons are sp2 (not a second p bond) Benzyne can be trapped by a Diene: Undergoes a Diels-Alder rxn Benzyne intermediate has 2 reactive sites Mixture of Regioisomers NH2 Br H2N NaNH2, NH3 + OCH3 OCH3 major OCH3 minor + NaBr