Noiseless, high frame rate (> kHz), photon counting arrays for use in the optical to extreme UV John Vallerga, Jason McPhate, Anton Tremsin and.
Download ReportTranscript Noiseless, high frame rate (> kHz), photon counting arrays for use in the optical to extreme UV John Vallerga, Jason McPhate, Anton Tremsin and.
Noiseless, high frame rate (> kHz), photon counting arrays for use in the optical to extreme UV John Vallerga, Jason McPhate, Anton Tremsin and Oswald Siegmund Space Sciences Laboratory, University of California, Berkeley Bettina Mikulec and Allan Clark University of Geneva AMOS 2005 - Maui - J. Vallerga - [email protected] Future WFS detector requirements • High optical QE for fainter guide stars • Lots of pixels - eventually 512 x 512 – More accuators – More complex LGS images (parallax, gated, etc) – Off null / open loop operation • Very low (or zero!) readout noise • kHz frame rates AMOS 2005 - Maui - J. Vallerga - [email protected] Photon Counting Count (x,y,t) Events Threshold Charge integrating Q V sv AMOS 2005 - Maui - J. Vallerga - [email protected] ADC Events sEvents Centroid in presence of noise: 1000 photons 100 photons 10 photons 8x8 Noiseless 35% QE 8x8 2.5 e- rms 90% QE - AMOS 2005 - Maui - J. Vallerga - [email protected] - 6x6 2.5 e- rms 90% QE - 4x4 2.5 e- rms 90% QE Centroid error vs. input fluence Centroid estimator error vs. technique Centroid Error (rms, radians) 100.000 CCD Quad cell CCD 8x8 weighted CCD 6x6 weighted Medipix 8x8 weighted 10.000 1.000 0.100 1 10 100 Input number of photons AMOS 2005 - Maui - J. Vallerga - [email protected] 1000 Imaging, Photon Counting Detectors Photocathode converts photon to electron MCP(s) amplify electron by 104 to 108 Rear field accelerates electrons to anode Patterned anode measures charge centroid AMOS 2005 - Maui - J. Vallerga - [email protected] Bandpass by photocathode selection Quantum Efficiency 0.8 CsI GaN Bialkalai GaAsP 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 200 400 600 Wavelength (nm) AMOS 2005 - Maui - J. Vallerga - [email protected] 800 MCP Detectors at SSL Berkeley COS FUV for Hubble (200 x 10 mm windowless) 25 mm Optical Tube GALEX 68 mm NUV Tube (in orbit) AMOS 2005 - Maui - J. Vallerga - [email protected] Wavefront Sensor Event Rates • 5000 centroids • Kilohertz feedback rates (atmospheric timescale) • 1000 detected events per spot for sub-pixel centroiding 5000 x 1000 x 1000 = 5 Gigahertz counting rate! • Requires integrating detector AMOS 2005 - Maui - J. Vallerga - [email protected] Our AO detector concept An optical imaging tube using: • GaAs photocathode • MCPs to amplify to ~104 Photocathode Photon e- Q = 104e- Pij = Pij + 1 • Medipix2 ASIC readout Window AMOS 2005 - Maui - J. Vallerga - [email protected] MCP Medip ix2 Medipix2 ASIC Readout Each pixel has amp, discriminator, gate & counter. 256 x 256 with 55 µm pixels (buttable to 512 x 512). Counts integrated at pixel. No charge transfer! Developed at CERN for Medipix collaboration (xray) Previous Pixel Shut ter Mask bit Lower Thresh. Polarity Mux. Clock out Disc. Disc. logic Input Preamp Disc. Mux. 13 bit counter – Shift Register Upper Thresh. Mask bit Next Pixel Analog Digital AMOS 2005 - Maui - J. Vallerga - [email protected] ~ 500 transistors/pixel First test detector • Demountable detector • Simple lab vacuum, no photocathode • Windowless – UV sensitive AMOS 2005 - Maui - J. Vallerga - [email protected] UV photon counting movie QuickTime™ and a YUV420 codec decompressor are needed to see this picture. AMOS 2005 - Maui - J. Vallerga - [email protected] Sub-pixel spatial linearity Lamp Pinhole Detector AMOS 2005 - Maui - J. Vallerga - [email protected] Imaged pinhole array Pinhole grid mask (0.5 x 0.5 mm) Gain: 20,000 Rear Field: 1600V Threshold: 3 keGap: 500µm AMOS 2005 - Maui - J. Vallerga - [email protected] Avg. movement of 700 spots 0 Delta X Centroid Position (µm) -10 Delta Y -20 -30 1 pixel -40 -50 -60 -70 -80 -90 -100 0 5 10 15 Lamp Position (mm) AMOS 2005 - Maui - J. Vallerga - [email protected] 20 25 Position error (550 events/spot) 50 Number of centroids 45 40 35 30 rms = 2.0 µm 25 20 15 10 5 0 -20 -15 -10 -5 0 5 10 Centroid difference (microns) AMOS 2005 - Maui - J. Vallerga - [email protected] 15 20 Vacuum Tube Design AMOS 2005 - Maui - J. Vallerga - [email protected] Vacuum Tube Design AMOS 2005 - Maui - J. Vallerga - [email protected] Vacuum Tube Design AMOS 2005 - Maui - J. Vallerga - [email protected] Vacuum Tube Design AMOS 2005 - Maui - J. Vallerga - [email protected] Medipix on a Header AMOS 2005 - Maui - J. Vallerga - [email protected] Summary • Noiseless detectors outperform CCDs at low fluence per frame • Photocathode choice to fit application • Medipix ASIC readout allows for a huge dynamic range, fast frame rate. MCP/Medipix Status • First tube in Fall 2005 • GaAs tube in 1st half of 2006 AMOS 2005 - Maui - J. Vallerga - [email protected] Future Possibilities • Medipix 3 now being discussed – – – – 130 nm CMOS technology Faster front end for less deadtime per pixel Faster readout rate (10 kHz frame rate) Radiation hard • Si APDs rather than MCPs as photon converter/amplifier – Higher optical QE – Near IR response – Cooling will be required to reduce dark count rate AMOS 2005 - Maui - J. Vallerga - [email protected] Acknowledgements This work was funded by an AODP grant managed by NOAO and funded by NSF Thanks to the Medipix Collaboration: • Univ. of Barcelona • University of Napoli • University of Cagliari • NIKHEF • CEA • University of Pisa • CERN • University of Auvergne • University of Freiburg • Medical Research Council • University of Glasgow • Czech Technical University • Czech Academy of Sciences • ESRF • Mid-Sweden University • University of Erlangen-Nurnberg AMOS 2005 - Maui - J. Vallerga - [email protected] Flat Field MCP deadspots Hexagonal multifiber boundaries 1200 cts/bin - 500Mcps AMOS 2005 - Maui - J. Vallerga - [email protected] Flat Field (cont) Ratio Flat1/Flat2 AMOS 2005 - Maui - J. Vallerga - [email protected] Histogram of Ratio consistent with counting statistics (2% rms) Readout Architecture • Pixel values are digital (13 bit) 3328 bit Pixel Column 255 3328 bit Pixel Column 1 3328 bit Pixel Column 0 • Bits are shifted into fast shift register • Choice of serial or 32 bit parallel output • Maximum designed bandwidth is 100MHz • Corresponds to 266µs frame readout 256 bit fast shift register 32 bit CMOS output LVDS out AMOS 2005 - Maui - J. Vallerga - [email protected] 3328 bit Pixel Column 255 3328 bit Pixel Column 1 3328 bit Pixel Column 0 256 bit fast shift register 32 bit CMOS output AMOS 2005 - Maui - J. Vallerga - [email protected] LVDS out “Built-in” Electronic Shutter • • • • • • Enables/Disables counter Timing accuracy to 10 ns Uniform across Medipix Multiple cycles per frame No lifetime issues External input - can be phased to laser AMOS 2005 - Maui - J. Vallerga - [email protected] EUV and FUV (50 - 200 nm) CsI 1985 vs 1999 0.7 CsI 1985 30° CsI 1985 20° CsI #3 2/99 20° CsI #3 2/99 30° CsI #2 1/99 20° CsI #2 1/99 30° 0.6 0.5 QDE 0.4 0.3 0.2 0.1 0 0 500 1000 Wavelength (Å) AMOS 2005 - Maui - J. Vallerga - [email protected] 1500 2000 GaN UV Photocathodes, 100- 400 nm AMOS 2005 - Maui - J. Vallerga - [email protected] GaAsP Photocathodes Hayashida et al. Beaune 2005 NIM AMOS 2005 - Maui - J. Vallerga - [email protected] Avalanche Photodiodes (APDs, Geiger mode) •Single photon causes breakdown in over-voltaged diode •QE potential of silicon •Arrays in CMOS becoming available But •Appreciable deadtime •Low filling factor •High dark counts, crosstalk and afterpulsing AMOS 2005 - Maui - J. Vallerga - [email protected] APD arrays 32 x 32 Edoardo Charbon Ecole Polytechnique Federale de Lausanne AMOS 2005 - Maui - J. Vallerga - [email protected] L3CCD (e2V Technologies) •Integrates charge •Multiplies charge in special readout register •Adjust gain such that se < 1e- But •Multiplication noise doubles photon noise variance •Single readout limiting frame rate AMOS 2005 - Maui - J. Vallerga - [email protected] Assumed performance parameters MedipixMCP CCD Binning 2x2 6x6 8x8 8x8 QE (%) 90 90 90 35 Readout noise 2.5 e- 2.5 e- 2.5 e- 0 Seeing width (pxls FWHM) 0.75 2.25 3 3 Diffract. width (pxls FWHM) 0.5 1.5 2 2 AMOS 2005 - Maui - J. Vallerga - [email protected] Gaussian weighted center of gravity algorithm: N T N N (s )ph 2ln(2)( N ph ) N D 2N N 2 (s )det 2 2 2 2 T 2 T 2 W 2 W 2 2 2 N T N W s det 2 32(ln(2)) ( N ph ) N D 2 3 (s 2 )tot (s 2 )det (s 2 )ph From Fusco et al SPIE 5490. 1155, 2004 AMOS 2005 - Maui - J. Vallerga - [email protected] 2 Advantages of multi-pixel sampling of Shack-Hartmann spots Quad cell (2x2) algorithm for Gaussian input Calculated position 1 Sigma Sigma Sigma Sigma Sigma = 0.2 = 0.4 = 0.6 = 0.8 = 1.0 0 -1 -1 0 Centroid true position 1 Non-linearity of 2 x 2 binning AMOS 2005 - Maui - J. Vallerga - [email protected] Advantages of multi-pixel sampling of Shack-Hartmann spots 4x4 6x6 4x4 COG non-linearity for Gaussian input 6x6 COG non-linearity for Gaussian input 1 Sigma = 0.4 Sigma = 0.8 Sigma = 1.2 0.5 Calculated position (center of gravity) Calculated position (center of gravity ) 1 0 -0.5 Sigma = 0.4 Sigma = 0.8 Sigma = 1.2 0.5 0 -0.5 -1 -1 -1 -0.5 0 0.5 1 Centroid true position -1 -0.5 0 Centroid true position Linear response off-null Insensitive to input width More sensitive to readout noise AMOS 2005 - Maui - J. Vallerga - [email protected] 0.5 1 Technology advantage High QE CCDs Number of pixels CCDs, Medipix Readout noise APD, Medipix, L3CCD Frame rate Medipix, CCD Gating Medipix AMOS 2005 - Maui - J. Vallerga - [email protected] Quantum Detection Efficiency (%) Soft X-Ray Photocathodes 100 CsBr KI 80 60 40 20 0 0.1 AMOS 2005 - Maui - J. Vallerga - [email protected] Energy (keV) 1