Continuum approach to crystal surface morphology evolution Dionisios Margetis Department of Mathematics, M.I.T. June 10, 2005 IMA Workshop on Effective Theories for Materials and Macromolecules.
Download ReportTranscript Continuum approach to crystal surface morphology evolution Dionisios Margetis Department of Mathematics, M.I.T. June 10, 2005 IMA Workshop on Effective Theories for Materials and Macromolecules.
Continuum approach to crystal surface morphology evolution Dionisios Margetis Department of Mathematics, M.I.T. June 10, 2005 IMA Workshop on Effective Theories for Materials and Macromolecules Surfaces of materials evolve Example: Decay (relaxation) of nanostructure Si nanostructure, 465 oC (Single Tunneling Microscopy, STM) [Ichimiya et al., Surf. Rev. Lett. (1998)] t=0 crystal surface t=121sec t t=241s t=723s (Universal) Evolution laws and predictions ? Motivations Quantum-dot arrays for electronic devices 300 nm Ge Si [Medeiros-Ribeiro et al., Phys. Rev. B (1998)] Grooving of grain boundaries in thin films Problem: Unpredictable surface morphology. Crystal A Crystal B 8mm [Sachenko et al., Phil. Mag. A (2002)] Nanopores for 1-molecule detection thin membrane [Li et al., Nature (2001)] 3-10 nm Examples of mass transport paths: Evaporation/condensation Surface diffusion t = f(l;...) char. time size Surface morphology relaxation:``Classical’’ studies chem. potential height, h (smooth) 2h m m0 2 x curvature Surface diffusion: x mpeak m valley 4 h h 2 j m 4 t l ) t x surface current, t [Herring, J. Appl. Phys. (1950); Mullins, J. Appl. Phys. (1957)] l4 Ds j m E surface diffusivity exp k BT Dominates time scale at sufficiently small l For smaller devices processing is `pushed’ to lower temperatures, T. Roughening transition temperature, TR facet Below TR, crystal shapes have macroscopic flat regions (facets ). Morphological evolution is driven by step motion. T< TR T>TR [Jeong, Williams, Surf. Sci. Reports (1999)] Macroscale [AFM, Si(001)] Nanoscale [STM, Si(001)] kink void cluster 25 nm 15 mm [Blakely,Tanaka, Japan J. Electron Microscopy (1999) ] facet facet edge; free boundary step [STM image of Si(001) steps; B. S. Swartzentruber’s website, Sandia Lab] continuum (near-equilibrium thermodynamics) Continuum solutions may break down at facet edges Relaxation experiments: Test theories of step motion? 2D ripples on Si(001); T = 650 –750 oC y lx=0.4 mm x Surface currents [Erlebacher et al., Phys. Rev. Lett. (2000)] 1 Peak-to-valley pv h O height variation t inverse linear decay t=2145 s 5 mm Same decay for ripples on Ag(110) [Pedemonte et al., Phys. Rev. B (2003)]. ly~10 lx Height profile, h x By contrast, for lithography-based 1D corrugations on Si(001) [Keefe et al., J. Phys. Chem. Solids (1994)] : pvh= O(ekt) exponential decay Outline: • Formulation of step motion laws for surface diffusion. • Derivation of continuum evolution equations in (2+1) dims. • Boundary conditions at facets. 1. Formulation of equations for step motion Kinetic processes: Point defect: adatom Adatom diffusion across terraces; atom attachment-detachment at steps Diffusivity Ds; scalar Rate coefficient k Energetic effects: • Line tension of step: tendency for step length reduction. strength g1 g =g3 /g1 strength g3 • Step-step interactions, e.g., (elastic) dipole-dipole, entropic repulsions: decay as 1/x2 ; higher-order interactions. [Marchenko, Parchin, Sov. Phys. JETP (1980)] Experiment: step evolution on Pb(111) , T=80 0C STM imaging; data from K. Thurmer, U. of Maryland NSF-MRSEC [Thurmer et al., Phys. Rev. Lett. (2001)] facet Top view Layers of atomic height: Top layer Next layer (grey) Surrounding steps 400 nm Model with circular steps z Continuum limit: h(r,t) step density | h| etc y x ri(t) a r Continuum (step) chemical potential Continuum 1 surface current ; J (const.)1 m | h | m normal to steps. radial m=D /ka s Problem: In real situations steps are not everywhere parallel. Transverse currents are distinct from longitudinal currents. [Margetis et al., Phys. Rev. B (2005)] 2. Continuum evolution laws in (2+1) dims Step density surface slope= | h| Ingredients: ; a/l 0 h J t Equilibrium adatom density J= mass conservation; from step velocity law a 1 J Ds c s 1 m |h| J k BT 0 0 1 m m Step kinetics 2 Ds ; m ka J J from bc’s at steps [Shenoy et al., Surface Sci. (2003)] m r, t ) g V a Line tension V V ( h | h | step chemical potential Step interactions [Margetis, submitted; Margetis, Kohn, in preparation.] PDE for height h outside facets Step motion laws in (2+1) dims Local coordinates (h,s; descending steps with height a; ith step at h =hi top terrace es hhi hi+1 eh ith terrace, hi< h<hi+1 • Step velocity law: v n ,i [ J i 1 - J i ] |h h i eh a Adatom current on ith terrace J i (r, t ) Ds Ci ; adatom density Ds 2 C i • Atom Ci 0 on ith terrace t attachment-detachment at steps bounding ith terrace: J i eh k [Ci Ci (s , t )] at h hi ; eq J i eh k [Ci Ci 1 ] at h hi 1; m eq Ci cs 1 i kBT eq mi(s,t): step chemical potential [Burton, Cabrera, Frank, Philos. Trans. Roy. Soc. London A (1951)] • Step chemical potential (incorp. step energetics), mi : [Change in energy of step by adding or removing an atom at hi,s) energy per unit ith step moves by: hi hi dh mi 1 k U hU ; h | h r | . a h step curvature d h [U ds] mi (ds)(dR) step length step length distance vertical to step energy per unit step length U U int , ag R R R R step U int 3 V ( i , i , i 1 ) V ( i 1 , i , i 1 ) ; g 3 0 3 l l l l ``line tension’’ step Nearest-neighbor step density interactions interactions Difficulty: Solving Laplace’s eqn. for Ci on i th terrace. Assumption: h is ``fast’’ and s is ``slow’’ Ci in closed form [E, Yip, J. Stat. Phys. (2001)] [Margetis, preprint (submitted); Margetis, Kohn, in preparation] h Ci (h, s , t ) ~ Ki (s , t ) dh ' Ni (s , t ), s | s r | h s h i From bc’s at step edges Adatom current in continuum limit: hi+1-hi0; use of boundary conditions at steps s J i es J i - Ds cs m es , k BT longitudinal current h J i eh J i - transverse current Ds cs 1 m eh k B T 1 m | h | m 2 Ds ka from Ci~Cieq, hhi Fluxes parallel and transverse to steps have different effective `` mobilities’’ 2. Continuum evolution laws in (2+1) dims Step density surface slope= | h| Ingredients: ; a/l 0 h J t Equilibrium adatom density J= mass conservation; from step velocity law a 1 J Ds c s 1 m |h| J k BT 0 0 1 m m Step kinetics 2 Ds ; m ka J J from bc’s at steps [Shenoy et al., Surface Sci. (2003)] m r, t ) g V a Line tension V V ( h | h | step chemical potential Step interactions Elastic dipole-dipole repulsive interactions: V= 2 PDE for height h outside facets [Margetis, submitted.] Surface-free energy approach Surface free energy per unit projected area 1 3 G g 0 g1 h g3 h 3 G G m m0 x hx y hy mobility tensor J cs M m h j 0 t PDE for h h g 3 h | h | h ; B Λ t | h | g1 Line tension h h(r,t) Step interactions M Λ , g1 Ds / k BT a Material prmt., (Length)4/Time Cartesian coordinates : J cs M m mobility tensor A2 hy2 1 2 2 Ds hx 1 m | h | hx M k BT | h |2 m | h | hy - 1 m | h | h x A m | h | hy 1 m | h | hx , 2 2 hy / hx 1 1 m | h | • Step energetics, m ; line tension and step interactions • Step kinetics, m | h| , m=2Ds /(ka) • Aspect ratio, hy/hx=A; for periodic profiles A~lx/ly hx x h Take A<1 Decaying bi-directional profiles • Ni(001) lithography corrugations, T~1219 oC [Maiya, Blakely, J. Appl. Phys. (1967)]; h(x,y,t) ~ H(x,y) e-k t f • Si(001) lithgr. corrugations, T= 800-1100oC, [Keefe, Umbach, Blakely, J. Phys. Chem. Solids (1994)] Evidence by simulations for 1D sinusoidal initial profiles: Israeli, Kandel, Phys. Rev. B (2000) lx/ly ~10-3 • Si(001) ripples, T=650-750oC 10 mm [Erlebacher et al., Phys. Rev. Lett. (2000)]; • Ag(110) ripples, T=200-230K [Pedemonte et al., Phys. Rev. B (2003)]. x h(x,y,t) ~ H(x,y) t -1 y lx/ly ~ 0.1 Understanding of relevant solutions of PDE is incomplete. Do separable solutions arise, and if so under what conditions? Numerical evidence for initial sinusoidal profiles in 2D by Shenoy et al., Phys. Rev. Lett. (2004) Assumptions and plausible scaling scenario: 2Ds/(ka) • Step interactions dominate over line tension • Attachment-Detachment of adatoms is slowest process: m | h|typ >> 1 h g 3 h (2Ds /k)/(terrace width) | h | h ; B Λ t | h | g1 small Ansatz: h(x,y,t)~T(t) H(x,y) A2>> (m| h|typ)-1 T(t)=T0 (1+b t)-1 1 2 A A 2 Consistent with sputter-rippling hx m | h | 1 Λ experiments | h |2 A2 - A 1 A0 (1D) : T(t)=T exp(-qt) 0 m | h | 1 Consistent with lithography experiments A=hy/hx ~lx/ly<1 [Margetis, submitted] 3. Boundary conditions at facet edge Example: v Axisymmetric shape facet steps continuum r2 r1 bc’s at moving boundary? g1: step line tension g3: strength of step interactions ri ri+1 y F (r , t ) | r h | x g =g3/g1, m=Ds/ka Diffusion-Limited (DL) kinetics: Terrace diffusion is rate-limiting process, m0 PDE: a r h(r,t) PDE a Fi (t ) ri 1 ri Solutions for ri(t) [Margetis, Fok, preprint] F 3B 2 1 2 4 Bg rF r>w t r r r r (outside facet) Choices of boundary conditions for PDE ``Thermodynamic’’ (thrmd) bc’s: • Height continuity, h(w,t)=hf(t) • Slope continuity • Current continuity, j=jf ``Layer-drop’’ (ld) conditions: • Same m : step chemical potential outside facet c D j s s m k BT • μ is extended continuously on facet hf (tn)-hf(tn+1)=a time of top-step nth collapse step height Non-local in time condition w Need to know sequence tn r hf(t) + Conditions at ``infinity’’ [Spohn, J. Phys. I (France), 1993; Margetis et al., Phys. Rev. B, 2004] [Israeli, Kandel, Phys. Rev. B (1999); Margetis, Fok, preprint (2005)] Study of bc’s at facets: Self-similar shapes, long t Numerical solution of step-motion eqns : ri ri 1 F(r,t)~T(t) Q(c) F r , t Fi (t ) : step density 2 c=r t -b : similarity variable; Initial conical shape: T(t)=1 Data collapse by scaling; from step-motion simulations Q(c) F(r,t) tn tn+6 r r unscaled data cr t -b, cone: b=1/4 For initial shapes h(r,0)=k rn : T(t)=tc; b,c: rational functions of n . facet [Cone: Israeli, Kandel, Phys. Rev. B (1999); Other shapes: Fok, Margetis, Rosales, in preparation] Large-n asymptotics of collapse times: tn~ t* . nq t*=t*(g,k,n); q: rational function of v Cone: F(r,t)=F(c=r (Bt) -1/4), q=4 Layer-drop bc: 1 c0 2 1 1 a g ( F 2 ) ccc ( F 2 ) cc 2 ( F 2 ) c c c 4 ( Bt* )1/ 4 c c0 c0 w ( Bt)1/ 4 1 adjustable parameter, t* facet hf(t) PDEODE ODE+``Thrmd bc’s’’ ODE+``Ld bc’’ w Universal Scaling of profile with g? Singular perturbation, g: small: arb. initial shape Boundary layer, facet F=0 d w 0 : F 3B 2 1 2 4 B rF t r r r r Ansatz near facet edge, ``Inner’’ solution F (r , t ) ~ a0 (t ) f 0 (h ) r w(t ) h ; d << w d (t ) d 1/ 3 PDE f 2 0 ''' boundary-layer width universal ODE f0 1 [Margetis, Aziz, Stone, Phys. Rev. B (2004)] Solution of universal ODE; f0(0)=0, f0 1 c3=c3(c1;, from bc’s Obtain scaling of Fpeak with g= Same scaling for both sets of bc’s: m=finite as rw+ f0 Singularity at h = 0 (facet edge) f 0 c1h 1/ 2 c3h 3 / 2 ... c3 c3 (c1 ) < 0 Need to relate c1, c3 and ε; apply set of bc’s Scaling with g (DL kinetics) [Margetis, Aziz, Stone, Phys. Rev. B (2004)] Fpeak : our prediction : Simulations, [Israeli, Kandel, Phys. Rev. B (1999)] d (t )= O ( 1/3 ) F peak O ( 1 / 6 ) for cone xpeak-x0 One more prediction for initial cone: w (t;=0)-w(t;1/0 facet w [Margetis, Aziz, Stone, Phys. Rev. B (2005)] 8 Another physical limit: Attachment-Detachment Limited kinetics (m=2Ds/ka) Ansatz for ``long’’ times: r-w(t) F (r , t ) ~ a0 (t ) f 0 (h ); h δ(t) PDE d /8 boundary-layer width [Margetis, Aziz, Stone, Phys. Rev. B (2005)] Extensions of continuum theory (from step motion laws) • Line tension dependence on angle with crystallographic axis y m (r, t ) ( a Continuum: h )k g (V0 ) | h | [Margetis, Kohn, in preparation] step x • Deposition of material from above. Flux F [1/(length)2/time] a w terrace width, w h J F t Dc 1 a J s s m F k B T 1 m | h | | h | • Atom diffusion along steps [Margetis, Kohn, in preparation] [Margetis, Aziz, Stone, in preparation] Epilogue-Messages • Continuum evolution eqn in (2+1) dims. Interplay : step kinetics & energetics, surface topography Unification of profile decay observations ? • Boundary conditions at facets are non-local in time; understanding within continuum for axisymm. shapes & similarity: connection with asymptotics of collapse times. Dependence of collapses on step parameters for axisymm.? ``Early-time’’ collapses and profiles w/ axisymm.? Extensions to (2+1) dimensions? • Universal scaling of axisym. profiles with step interactions in continuum; agreement with step eqs for class of bc’s. Acknowledgments : • R. V. Kohn (Courant Institute, NYU). • R. R. Rosales and grad. student P.-W. Fok (Dept. of Mathematics, MIT). • M. J. Aziz and H. A. Stone (DEAS, Harvard). • R. E. Caflisch (Dept. of Mathematics, UCLA, and California Nanosystems Institute). • J. Erlebacher (Materials, Johns Hopkins). Example: Step-flow equations for circular steps Step velocity …. dri [ J i 1 (ri ) J i (ri )] dt a C J i ( r ) Ds i adatom current r k [C i (ri ) C i ] J i (ri ) eq k [C i (ri 1 ) Cieq1 ] J i (ri 1 ) r1 … i-th terrace ri r ri 1 diffusion across terraces attach.-detach at steps (b.c.’s at r=ri, ri+1) eq g1 [V (ri , ri 1 ) V (ri , ri 1 )] ri 2a ri ri line tension ….. Adatom density Ci Ds 2 C i 0 t Ci mi a ri step-step interactions Eqs of motion for ri(t) mi c s 1 k BT step chem. potential Elastic dipole-dipole interactions V (ri , ri 1 ) ri ri 1 4 g3a3 (ri 1 ri )(ri 1 ri ) 2 [Israeli, Kandel, Phys. Rev. B (1999); Margetis, Aziz, Stone, Phys. Rev. B (2005), in press] STM image of terraces (width about 100 Angstroms) , separated by steps (kinks evident) Roughening temperature depends on surface orientation: (001) (110) (113) Pimpinelli & Villain, Physics of Crystal Growth (1998) 1190 C 1370 C 1340 C