SLAC E158: Measuring Parity Violation in Fixed-Target Møller Scattering E158 Goal: dsin2qW = +/- 0.001 Best measurement of sin2qW away from the Z-pole David Relyea SLAC/Princeton University CIPANP 2003 20
Download ReportTranscript SLAC E158: Measuring Parity Violation in Fixed-Target Møller Scattering E158 Goal: dsin2qW = +/- 0.001 Best measurement of sin2qW away from the Z-pole David Relyea SLAC/Princeton University CIPANP 2003 20
SLAC E158: Measuring Parity Violation in Fixed-Target Møller Scattering E158 Goal: dsin2qW = +/- 0.001 Best measurement of sin2qW away from the Z-pole David Relyea SLAC/Princeton University CIPANP 2003 20 May, 2003 QC1B Main acceptance collimator Outline • • • • • Physics Motivation Experimental Technique Data Analysis Results and Interpretations Outlook 05/20/2003, DRR E158 @ CIPANP2003 Parity Violation in Møller Scattering • Scatter polarized 50 GeV electrons off unpolarized atomic electrons • Measure A σR - σL PV σR σL • Small tree-level asymmetry APV GF 16sin2θ 1 2 sin θW mE 2 2 2π (3 cos θ) 4 -9 A 320 10 • At tree level, PV (at 90 degrees in CM frame) • Raw expected asymmetry about 150 ppb Goal is to measure it with precision of 8% Most precise to date measurement of sin2qW at low Q2 with s(sin2qW)=0.001 05/20/2003, DRR E158 @ CIPANP2003 E158: Physics Impact • Establish running of sinqW to 8s level • Sensitivity to new physics: compositeness up to 15 TeV, Z’ (GUTs) to ~1TeV Complementary to collider limits, different couplings LEPII e Compositeness R R e e e + e E158 L L e e e e e e e R R – e L L e e 15 TeV e FNAL Neutral currents (GUTs) q q Z´ e l+ Z´ l e e Scalar interactions (LFV) 05/20/2003, DRR e e D e e e M Z' 1 T eV g2 0.01Gf 2 2MΔ E158 @ CIPANP2003 Experimental Technique • Scatter polarized electrons off atomic electrons High cross section (14 mBarn) High intensity electron beam, ~84% polarization 0.18 r.l. LH2 target (1.5 m) Luminosity 4*1038 cm-2s-1 High counting rates [ flux-integrating calorimeter End Station A • Principal backgrounds: elastic and inelastic ep • Main systematics: Beam polarization Helicity-correlated beam effects Backgrounds Source Linac 05/20/2003, DRR ESA E158 @ CIPANP2003 Parity-Violating Asymmetry 1. Measure asymmetry for each pair of pulses, p, A exp σR - σL σR σL 2. Correct for difference in R/L beam properties: charge, position, angle, energy Araw Aexp ai Δxi R-L differences coefficients determined experimentally by regression or from dithering coefficients 3. Obtain physics asymmetry: 1 Araw fbkg Abkg APV Pb 1 fbkg 05/20/2003, DRR beam polarization backgrounds E158 @ CIPANP2003 Experimental Challenges 1. Electron Beam 2. Electron Beam monitoring i) high intensity - 500 kWatt beam power ii) stability - intensity jitter <1% - spotsize jitter <10% - position jitter <10% iii) small left-right asymmetries - intensity - position/angle - energy iv) high (>80%) polarization v) Compatibility with PEPII operation i) toroid resolution: < 30 ppm per pulse ii) BPM resolution: < 1 mm per pulse iii) energy resolution: < 50 ppm per pulse AI I I I R Ax x AE I R E E R R R L L x E E 3. Liquid Hydrogen Target 4. Detectors i) target density fluctuations: <10-4 per pulse ii) 18% radiation length - absorbs 500W beam power iii) Safety (largest LH2 target in the world) i) ii) iii) iv) 05/20/2003, DRR 2 10 7 L 10 nm L 2 10 8 L detector resolution: <100 ppm per pulse multiple backgrounds radiation damage linearity < 1% E158 @ CIPANP2003 Electron Beam: Systematics • Beam helicity is chosen pseudo-randomly by using electro-optical Pockels cells in the Polarized Light Source • Create pulse quadruplets at 30 Hz • Beam asymmetries reduced by using feedback at the Source • Control charge asymmetry and position asymmetry • Physics Asymmetries can be reversed • Insert a half-wave plate in the Source • Change the (g-2) spin precession in the A-Line (take 45 GeV and 48 GeV data) •“Null Asymmetry” cross-check is provided by a Luminosity Monitor • Measures very forward angle e-p (Mott) and Møller scattering • False Asymmetries can also be reversed • Insert the “-I/+I” Inverter in Polarized Light Source • Reverses both false beam position and angle asymmetries • Leaves physics asymmetry unchanged 05/20/2003, DRR E158 @ CIPANP2003 Experimental Layout: ESA Target chamber Quadrupoles Concrete Shielding Detector Cart Precision Beam Monitors Dipoles Main Collimators Drift pipe Luminosity Monitor 60 m 05/20/2003, DRR E158 @ CIPANP2003 Experimental Layout: Spectrometer 0m Photon Collimator Acceptance Collimator 58 m 30 cm 20 cm 0 cm Target Dipoles Quadrupoles • Dipole chicane allows clean collimation of photons and positrons from target interactions • Quadrupoles separate moller and ep flux at detector face (see inset) • Main acceptance collimator (upper right corner) accepts mollers in desired momentum/radial range • Synchrotron collimators (not shown) block synchrotron radiationE158 @ CIPANP2003 05/20/2003, DRR Experimental Layout: Detectors Primary (Unscattered) Beam Radius (cm) (z axis not to scale) MOLLER, EP are copper/quartz fiber calorimeters PION is a quartz bar Cherenkov LUMINOSITY is an ion chamber with Al pre-radiator MOLLER q lab 6.0mrad LUMI q lab 1.5mrad All detectors have azimuthal segmentation, and have PMT readout to 16-bit ADC 05/20/2003, DRR E158 @ CIPANP2003 A exp σR - σL σR σL Regression Analysis A exp σR σL QR QL σR σL QR QL In addition, independent analysis based on beam dithering 05/20/2003, DRR E158 @ CIPANP2003 Raw Asymmetry Statistics 05/20/2003, DRR E158 @ CIPANP2003 Detector Asymmetry Dipoles Detector divided into 3 rings of PMTs: Inner, Middle and Outer Each ring manifests an asymmetry dipole Asymmetry dipoles can be used to study systematics 05/20/2003, DRR E158 @ CIPANP2003 Beam Systematics Beam systematics are small But, some detector ‘monitors’ show poor c2 and non-zero mean values. 05/20/2003, DRR E158 @ CIPANP2003 Beam Systematics Use radial and azimuthal segmentation of Moller detector to construct ‘monitors’ that have much larger sensitivity to beam parameters than the Moller ‘monopole’ Beam Parameter Detector Monitor Monitor slope / Moller monopole slope E (OUT-MID) monopole 11 X MID xdipole 20 Y MID ydipole 35 X’ OUT xdipole 37 Y’ (OUT-MID) ydipole 52 Current systematic error: 18 ppb 05/20/2003, DRR Should reduce to 10 ppb or less E158 @ CIPANP2003 “ep” Detector Data 05/20/2003, DRR E158 @ CIPANP2003 APV Corrections and Backgrounds APV 1 Araw fbkg Abkg , Acorr fbkg Abkg Pb 1 fbkg •Run I systematic error should reduce from 24 to less than 15 ppb •Run 05/20/2003, DRRII corrections will be on the order of 25 ppb E158 @ CIPANP2003 Normalization Errors APV 1 Araw fbkg Abkg Pb 1 fbkg •Beam polarization measured using polarized foil target •Same spectrometer used with dedicated movable detector 05/20/2003, DRR E158 @ CIPANP2003 Raw Asymmetry Result (blinded; before corrections and normalization) 05/20/2003, DRR E158 @ CIPANP2003 Moller Physics Asymmetry (unblinded; with corrections and normalization) APV(e-e- at Q2 = 0.027 GeV2): -151.9 29.0 (stat) 32.5 (syst) parts per billion (preliminary) Significance of parity nonconservation in Møller scattering: 3.6s 05/20/2003, DRR E158 @ CIPANP2003 Weak Mixing Angle sin2q W(Q2=0.027 GeV2) = 0.2371 ± 0.0025 (stat) ±0.0027 (syst) (preliminary) Convert to sin 2 qWMS (M Z2 for comparison with other experiments: E158 projected sin 2 qWMS (M Z2 05/20/2003, DRR E158 @ CIPANP2003 Implications • Parity is violated in Møller scattering • Limit on LL at the level of 5-6 TeV (90% C.L.) • Limits on extra Zs at the level of 300 GeV • Limit on lepton-flavor violating coupling ~ 0.02-0.03 GF These numbers are competitive with collider limits 05/20/2003, DRR E158 @ CIPANP2003 Conclusions A very challenging experiment is producing physics results • Parity is violated in Møller scattering • Inelastic e-p asymmetry at low Q2 measured; consistent with quark picture • First measurement of e-e transverse asymmetry • Run II data are being analyzed; will double statistics • Final Run III in July-August 2003 Preliminary Run 1 results APV (Moller) = -151.9 ± 29.0 ±32.5 ppb sin2qWeff= 0.2371 ± 0.0025 ±0.0027 05/20/2003, DRR E158 @ CIPANP2003 Polarimetry 84.9 +/- 4.4 % polarization throughout Run I 05/20/2003, DRR E158 @ CIPANP2003 Beam Delivery for E158 (April 20 - May 27) ~84% Electron Polarization Beam Delivery Efficiency (120Hz running) 72% for 48 GeV, 3.5 x 1011 65% for 45 GeV, (5-6) x 1011 48 GeV 3.5 • 1011 / Pulse 45 GeV (5-6) • 1011 / Pulse 104,000 Peta-Electrons (16.6 Coulombs) 232 Million Spills 05/20/2003, DRR E158 @ CIPANP2003 LH2 Target Chamber Quadrupoles Dipoles BPM LH2 Scattering Chamber 05/20/2003, DRR 2 Spectrometer Collimators E158 @ CIPANP2003 Charge Asymmetry -85 ± 344 ppb Avg. correction = -44 ± 332 ppb The double-feedback keeps the average charge asymmetry corrections tiny! -341 ± 334 ppb 05/20/2003, DRR 2a-3a = 2.10 ± 5.72 ppb E158 @ CIPANP2003 Energy Asymmetry 4.9 ± 15.7 ppb Nulling at 1.2 indeed energy the charge asymmetry GeV region does seem to help zero the asymmetry. The two energy BPM’s agree to very high precision! 1.71 ± 2.60 ppb 05/20/2003, DRR E158 @ CIPANP2003 POS Loop Performance Feeding back on ASSET BPM’s, after ~30M pairs: 2.2 ± 2.5 nm 0.9 ± 5.0 nm Some A-line BPM’s: 05/20/2003, DRR E158 @ CIPANP2003 Polarized Source Laser System 05/20/2003, DRR E158 @ CIPANP2003 Beam Asymmetry Feedbacks Item Control Intensity Position Diagnostic IA Pockels Cell Piezo Mirror Toroid (@ 1 GeV) BPM (@ 1 GeV) Algorithm: - measure asymmetry on a run with Flash:Ti Piezomirror L3 IA Intensity 1 PD N pulses (typically 1-30K pulses) - induce asymmetry on next run to cancel measured asymmetry on current run Helicity Control Bench Helicity /2 filter plate Cleanup polarizer -2I PS CP +2I remotely insertable 05/20/2003, DRR Asymmetry inverter Gives better than 1/sqrt(N) scaling of charge asymmetry, position difference Intensity 2 PD E158 @ CIPANP2003 Results: Pion Asymmetry ALR(p) = 1.6 ppm Estimated correction to ALR ~2 ppb 05/20/2003, DRR E158 @ CIPANP2003 Electron Beam: Results Beam property beamA Intensity 225 +/- 320 ppb Energy -0.1 +/- 1.4 keV (1.1 +/- 16 ppb) X Position -16.9 +/- 5.6 nm Y Position -3.3 +/- 4.0 nm X Angle 0.41 +/- 0.23 nrad Y Angle 0.12 +/- 0.07 nrad Polarization 05/20/2003, DRR LR 84.9 +/- 4.4% E158 @ CIPANP2003 Profile Detector 4 Quartz Cherenkov detectors with PMT readout insertable pre-radiators insertable shutter in front of PMTs Radial and azimuthal scans collimator alignment, spectrometer tuning background determination Q2 measurement 05/20/2003, DRR E158 @ CIPANP2003 Scattered Flux Profile Møller peak scan: data vs Monte Carlo Møller scattering kinematics: <Q2> = 0.0266 GeV2 <y> = 0.6 Data Monte Carlo • ~2 mm geometry • 1% energy scale • Radiative tail • <1% background 05/20/2003, DRR E158 @ CIPANP2003 Pion Detector •~ 0.5 % pion flux •~ 1 ppm asymmetry •< 5 ppb correction 05/20/2003, DRR E158 @ CIPANP2003 Collimators Acceptance Collimator 05/20/2003, DRR E158 @ CIPANP2003 Luminosity Monitor Data •Null test at level of 20 ppb • Target density fluctuations small • Limits on second order effects 05/20/2003, DRR E158 @ CIPANP2003 Luminosity Monitor Segmented ion chamber detector with Aluminum preradiator. 500W incident power (50W from synchrotron radiation) Signal: Motts and high energy Mollers 350M electrons per pulse; <E>~40 GeV APV ~ -10ppb Null asymmetry measurement Enhanced sensitivity to beam fluctations and target density fluctuations. 05/20/2003, DRR E158 @ CIPANP2003 Statistical and Systematic Fluctuations Integrate Detector response: Flux Counting 05/20/2003, DRR E158 @ CIPANP2003 Electron Beam: Delivery Summary ITEM Goal Run I (2002) Beam Charge 6 x 1011 6 x 1011 Intensity Jitter 2% rmsa 0.5% rms Position Jitter <10% of spotsize 5% of spotsize Spotsize Jitter <10% of spotsize 5% of spotsize Energy Spread 0.3% rms Energy Jitter 0.2% rms 0.03% rms Polarization 75% ~85% a2% 05/20/2003, DRR 0.1% rms required for physics measurement; 1% for accelerator operation E158 @ CIPANP2003 Electron Beam: Monitor Resolutions Device Goal Tests Run I resultsa Target BPM x,y 1 mm 0.5 mm 2 mm Target BPM x’,y’ 0.4 mrad 0.03 mrad 0.1 mrad Energy BPMb 30 ppm 40 ppm Target Toroid 30 ppm 60 ppm sBPM 2 microns goals for Run I (due to statistics) bEnergy goal ignores detector calorimetric compensation for 1/E – dependence of Møller cross section Resolution goals are to achieve 1ppb error after 600M pulses for each of x, x’, y, y’, E, I senergy 1 MeV BPM24 X (MeV) storoid 30 ppm 30 ppm aRelaxed Agreement (MeV) Resolution 1.05 MeV 05/20/2003, DRR @ BPM12 XE158 (MeV) CIPANP2003 Moller Asymmetry (Blinded) Based on analysis of 146M spills collected in April-May 2002 Asymmetry blinded to avoid bias (expect ~ 150 ppb) 05/20/2003, DRR E158 @ CIPANP2003 Results: Systematic Check Experiment run at 2 energies (for g-2 asymmetry flip) Equal data samples taken at both half-wave plate settings 05/20/2003, DRR E158 @ CIPANP2003 Results: Asymmetry Pulls Per Run Pull Arun Arun σ run Expect a mean of 0 and an RMS of 1 05/20/2003, DRR E158 @ CIPANP2003 Results: Statistics and Systematics Asymmetry pulls per event pair: 17M spills (about 2 days of data) Average asymmetry width: 195 ppm 05/20/2003, DRR E158 @ CIPANP2003 Physics Runs Energy #days @120Hz # Peta-Electron #spills Average Charge Production Efficiency* Run I 45.6 GeV 19.2 67K 125M 5.5 x 1011 63% Run I 48.8 GeV 14.8 37K 105M 3.5 x 1011 69% Run II 45.6 GeV 15.2 56K 113M 5.2 x 1011 72% Run II 48.8 GeV 19.0 63K 153M 4.3 x 1011 78% *Efficiency is avg. delivered rate normalized to 119Hz Run I: April 23 12:00 – May 28 00:00 (this result) Run II: October 10 08:00 – November 13 16:00 • Run I with PEPII, Run II dedicated • One g-2 flip in each run • /2 flip roughly once in two days • Asymmetry inverter flip once a week • Run I data divided into 24 “slugs” 05/20/2003, DRR 1020 Electrons on Target Run 2 Run 1 E158 @ CIPANP2003 E158 Collaboration Institutions Caltech Princeton SLAC Saclay Smith College Syracuse Jefferson Lab UC Berkeley UMass Amherst U. of Virginia 65 physicists 5 grad students Sept 1997: 1998: 1999: 2000: 2001: Spring 2002: Fall 2002: Summer 2003: 05/20/2003, DRR PAC approval Polarized Beam Instrumentation R&D Spectrometer and Detector Design Construction Funds and Test Beams Commissioning Run Physics Run I Physics Run II Physics Run III (final statistics) E158 @ CIPANP2003 Polarized Beam High doping for 10-nm GaAs surface overcomes charge limit. Electrons per pulse Low doping for most of active layer yields high polarization. New cathode No sign of charge limit! Old cathode Laser Power (µJ) 05/20/2003, DRR E158 @ CIPANP2003 Experimental Layout: Liquid Hydrogen Target Refrigeration Capacity Max. Heat Load: - Beam - Heat Leaks - Pumping Length Radiation Lengths Volume Flow Rate Reynolds number in target cell Disk 1 Disk 2 Disk 3 1000W 500W 200W 100W 1.5 m 0.18 47 liters 10 m/s 106 Disk 4 Wire mesh disks in the target introduce turbulence at the 2mm scale and a transverse velocity component. Total of 8 disks in the target. 05/20/2003, DRR E158 @ CIPANP2003 MOLLER Detector Basic Idea: electron flux light guide : quartz : copper air shielding 05/20/2003, DRR PMT E158 @ CIPANP2003 Electron Beam: Diagnostics Accelerator Thermionic Gun BPMs (3) Polarized Gun Toroids (2) 1 GeV Dithering Coils for x, x’, y, y’ 48 GeV Momentum Defining Slits Angle BPMs (2) Dispersive (Energy) BPMs (2) Position BPMs (2) Toroids (2 pair) Wire Array Not shown: • Møller Polarimeter in ESA • Synchrotron Light Monitor before momentum slits • Energy dithered by using sub-booster phases for Sectors 27, 28 05/20/2003, DRR E158 @ CIPANP2003 Transverse Asymmetry Asymmetry vs Flips sign with g-2 precession → physics ! ~ 3 ppm up-down asymmetry with 85% transverse polarization 05/20/2003, DRR Two-photon exchange QED effect: Calculation does not exist in the literature Data carefully re-weighted to maintain azimuthal symmetry E158 @ CIPANP2003