b-Quark Production at the Tevatron I believe it is important to have good “leading-log” order QCD Monte-Carlo model predictions of collider observables.
Download ReportTranscript b-Quark Production at the Tevatron I believe it is important to have good “leading-log” order QCD Monte-Carlo model predictions of collider observables.
b-Quark Production at the Tevatron I believe it is important to have good “leading-log” order QCD Monte-Carlo model predictions of collider observables. The “leading-log” QCD Monte-Carlo model estimates are the “base line” from which other calculations can be compared. I see no reason why the QCD “leading-log” Monte-Carlo models should not qualitatively describe heavy quark production (in the same way they qualitatively describe light quark and gluon production). We measure hadrons & leptons (NOT quarks & gluons) and hadronization effects are important! The QCD “leading-log” Monte-Carlo models incorporate fragmentation via “string fragmentation” or “cluster fragmentation” or “FF fragmentation” thus producing hadrons and leptons. At “leading-log” order the sources of b-quarks can be divided into three categories: “flavor creation”, “flavor excitation”, “shower/fragmentation” (i.e. “gluon splitting”). “Flavor Creation” “Flavor Excitation” b-quark Proton AntiProton Underlying Event Underlying Event Initial-State Radiation b-quark Proton “Parton Shower/Fragmentation” b-quark AntiProton Underlying Event Underlying Event b-quark Initial-State Radiation Proton AntiProton Underlying Event Underlying Event Initial-State Radiation gluon, quark, or antiquark b-quark b-quark All three sources are important at the Tevatron! Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 1 b-Quark Production at the Tevatron I believe it is important to have good “leading-log” order QCD Monte-Carlo model predictions of collider observables. The “leading-log” QCD Monte-Carlo model estimates are the “base line” from which other calculations can be compared. I see no reason why the QCD “leading-log” Monte-Carlo models should not qualitatively describe heavy quark production (in the same way they qualitatively describe light quark and gluon production). We measure hadrons & Want leptons gluons) and hadronization effects are to (NOT know quarks what the&“leading-log” important! The QCD “leading-log” Monte-Carlo models incorporate fragmentation via QCD Monte-Carlo Models predict, “string fragmentation” or “cluster fragmentation” or “FF fragmentation” thus producing how stable the estimates are, hadrons and leptons. and how they compare with data. At “leading-log” order the sources of b-quarks can be divided into three categories: “flavor creation”, “flavor excitation”, “shower/fragmentation” (i.e. “gluon splitting”). “Flavor Creation” “Flavor Excitation” b-quark Proton AntiProton Underlying Event Underlying Event Initial-State Radiation b-quark Proton “Parton Shower/Fragmentation” b-quark AntiProton Underlying Event Underlying Event b-quark Initial-State Radiation Proton AntiProton Underlying Event Underlying Event Initial-State Radiation gluon, quark, or antiquark b-quark b-quark All three sources are important at the Tevatron! Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 2 b-Quark Production at the Tevatron I believe it is important to have good “leading-log” order QCD Monte-Carlo model predictions of collider observables. The “leading-log” QCD Monte-Carlo model estimates are the “base line” from which other calculations can be compared. I see no reason why the QCD “leading-log” Monte-Carlo models should not qualitatively describe heavy quark production (in the same way they qualitatively describe light quark and gluon production). Soon!… when we haveand hadronization effects are We measure hadrons & Want leptons gluons) to (NOT know quarks what the&“leading-log” important! The QCD “leading-log” Monte-Carlo models incorporate fragmentation via beyond “leading-log” order QCD Monte-Carlo Models predict, “string fragmentation” or “cluster fragmentation” or “FF fragmentation” thus producing how stable the estimates are, Monte-Carlo models hadrons and leptons. and how they compare with data. with At “leading-log” order the sources offragmentation! b-quarks can be divided into three categories: “flavor creation”, “flavor excitation”, “shower/fragmentation” (i.e. “gluon splitting”). “Flavor Creation” “Flavor Excitation” b-quark Proton AntiProton Underlying Event Underlying Event Initial-State Radiation b-quark Proton “Parton Shower/Fragmentation” b-quark AntiProton Underlying Event Underlying Event b-quark Initial-State Radiation Proton AntiProton Underlying Event Underlying Event Initial-State Radiation gluon, quark, or antiquark b-quark b-quark All three sources are important at the Tevatron! Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 3 “Flavor Creation” “Flavor Creation” Integrated b-quark Cross Section for PT > PTmin b-quark 1.0E+01 Proton q or g q or g 1.0E+00 Underlying Event Initial-State Radiation b-quark “Flavor Creation” corresponds to the production of a b-bbar pair by gluon fusion or by annihilation of light quarks. Cross Section (b) Underlying Event 1.8 TeV |y| < 1 AntiProton CTEQ3L 1.0E-01 Pythia Creation Isajet Creation 1.0E-02 Herwig Creation D0 Data CDF Data Leading-Log order “Flavor Creation” is a factor of four below the data! 1.0E-03 5 10 15 20 25 30 35 40 PTmin (GeV/c) Data from CDF and D0 for the integrated b-quark total cross section (PT > PTmin, |y| < 1) for proton-antiproton collisions at 1.8 TeV compared with the QCD Monte-Carlo model predictions of HERWIG, PYTHIA, and ISAJET for the “flavor creation” subprocesses. The parton distribution functions CTEQ3L have been used for all three Monte-Carlo models. . Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 4 “Flavor Excitation” “Gluon Splitting” “Flavor Excitation” “Parton Shower/Fragmentation” b-quark Proton AntiProton Underlying Event Underlying Event Proton AntiProton Underlying Event Underlying Event b-quark Initial-State Radiation Initial-State Radiation gluon, quark, or antiquark “Flavor Excitation” corresponds to the scattering of a b-quark (or bbar-quark) out of the initial-state into the final-state by a gluon or by a light quark or antiquark. b-quark b-quark The b-bbar pair is created within a parton shower or during the the fragmentation process of a gluon or a light quark or antiquark. Here the QCD hard 2-to-2 subprocess involves gluons and light quarks and antiquarks. This includes what is referred to as “gluon splitting”. “Flavor excitation” is, of course, very sensitive to the number of b-quarks within the proton (i.e. the structure functions). The Monte-Carlo models predictions for the “shower/fragmentation” contribution differ considerably. This is not surprising since ISAJET uses independent fragmentation, while HERWIG and PYTHIA do not; and HERWIG and PYTHIA modify the leading-log picture of parton showers to include “color coherence effects”, while ISAJET does not. Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 5 Integrated Inclusive b-Quark Cross Section Integrated b-quark Cross Section for PT > PTmin Total 1.0E+02 “Flavor Excitation” PYTHIA 6.158 CTEQ3L PARP(67)=4 PY 6.158 (67=4) Total Flavor Creation Flavor Excitation 1.0E+01 “Flavor Creation” Cross Section (b) Shower/Fragmentation D0 Data CDF Data 1.0E+00 1.0E-01 1.8 TeV |y| < 1 1.0E-02 “Gluon Splitting” 1.0E-03 0 5 10 15 20 25 30 35 40 PTmin (GeV/c) Data on the integrated b-quark total cross section (PT > PTmin, |y| < 1) for protonantiproton collisions at 1.8 TeV compared with the QCD Monte-Carlo model predictions of PYTHIA 6.158 (CTEQ3L, PARP(67)=4). The four curves correspond to the contribution from “flavor creation”, “flavor excitation”, “shower/fragmentation”, and the resulting total. Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 6 Integrated Inclusive PYTHIA Tune A Section b-Quark Cross Integrated b-quark Cross Section for PT > PTmin Integrated b-quark Cross Section for PT > PTmin 1.0E+02 1.0E+02 PYTHIA 6.206 CTEQ5L PARP(67)=1 1.0E+00 1.0E-01 PY 6.206 (67=4) Total Flavor Creation Flavor Excitation Shower/Fragmentation D0 Data CDF Data 1.0E+01 Cross Section (b) 1.0E+01 Cross Section (b) PYTHIA 6.206 CTEQ5L PARP(67)=4 PY 6.206 (67=1) Total Flavor Creation Flavor Excitation Shower/Fragmentation D0 Data CDF Data 1.0E+00 1.0E-01 1.8 TeV |y| < 1 1.8 TeV |y| < 1 1.0E-02 1.0E-02 Changed at version 6.138! 1.0E-03 1.0E-03 0 5 10 15 20 25 30 35 40 0 PTmin (GeV/c) 5 10 15 20 25 30 35 40 PTmin (GeV/c) Data on the integrated b-quark total cross section (PT > PTmin, |y| < 1) for proton-antiproton collisions at 1.8 TeV compared with the QCD Monte-Carlo model predictions of PYTHIA 6.206 (CTEQ5L) with PARP(67)=1 (new default) and PARP(67)=4 (old default). The four curves correspond to the contribution from flavor creation, flavor excitation, shower/fragmentation, and the resulting total. PARP(67) is a scale factor that governs the amount of large angle initial-state radiation. Larger values of PARP(67) results in more large angle initial-state radiation! Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 7 B+ Meson Cross Section Integrated b-quark Cross Section for PT > PTmin B+ Meson Transverse Momentum Distribution 1.0E+02 1.0E+01 PYTHIA 6.158 CTEQ3L PARP(67)=4 PY 6.158 (67=4) Total Flavor Creation PYTHIA 6.158 CTEQ3L PARP(67)=4 Flavor Excitation 1.0E+01 1.0E+00 CDF Data ds/dPT ( b/GeV/c) Cross Section (b) Shower/Fragmentation D0 Data 1.0E+00 1.0E-01 Important to compare at the B-meson level! 1.8 TeV |y| < 1 Total 1.0E-01 "Flavor Excitation" 1.0E-02 "Shower/Fragmentation" 1.0E-02 1.0E-03 1.8 TeV |y| < 1 1.0E-03 "Flavor Creation" 1.0E-04 0 5 10 15 20 25 30 35 40 0 PTmin (GeV/c) 5 10 15 20 25 30 35 40 PT (GeV) Data on the integrated b-quark cross section (PT > PTmin, |y| < 1) at 1.8 TeV compared with the QCD Monte-Carlo model predictions of PYTHIA 6.158 (CTEQ3L, PARP(67)=4). Data on the B+ meson differential cross section (|y| < 1) at 1.8 TeV compared with the QCD Monte-Carlo model predictions of PYTHIA 6.158 (CTEQ3L, PARP(67)=4). Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 8 B+ Meson Cross Section Integrated b-quark Cross Section for PT > PTmin B+ Meson Transverse Momentum Distribution 1.0E+02 1.0E+01 PYTHIA 6.158 CTEQ3L PARP(67)=4 PY 6.158 (67=4) Total Flavor Creation PYTHIA 6.158 CTEQ3L PARP(67)=4 Flavor Excitation 1.0E+01 1.0E+00 CDF Data ds/dPT ( b/GeV/c) Cross Section (b) Shower/Fragmentation D0 Data Total Warning!… do not use “Peterson Fragmentation” Important to compare at Use PYTHIA’s model of the B-meson level! fragmentation: “String Fragmentation” 1.0E+00 1.0E-01 1.8 TeV |y| < 1 1.0E-01 "Flavor Excitation" 1.0E-02 "Shower/Fragmentation" 1.0E-02 1.0E-03 1.8 TeV |y| < 1 1.0E-03 "Flavor Creation" 1.0E-04 0 5 10 15 20 25 30 35 40 0 PTmin (GeV/c) 5 10 15 20 25 30 35 40 PT (GeV) Data on the integrated b-quark cross section (PT > PTmin, |y| < 1) at 1.8 TeV compared with the QCD Monte-Carlo model predictions of PYTHIA 6.158 (CTEQ3L, PARP(67)=4). Data on the B+ meson differential cross section (|y| < 1) at 1.8 TeV compared with the QCD Monte-Carlo model predictions of PYTHIA 6.158 (CTEQ3L, PARP(67)=4). Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 9 B+ Meson Cross Section Integrated b-quark Cross Section for PT > PTmin B+ Meson Transverse Momentum Distribution 1.0E+02 1.0E+01 HERWIG 6.4 CTEQ5L HW 6.4 Total Flavor Creation Flavor Excitation Shower/Fragmentation D0 Data CDF Data 1.0E+00 ds/dPT ( b/GeV/c) Cross Section (b) 1.0E+01 HERWIG 6.4 CTEQ5L 1.0E+00 1.0E-01 Total 1.0E-01 1.0E-02 "Flavor Excitation" "Flavor Creation" 1.8 TeV |y| < 1 1.0E-02 1.0E-03 1.8 TeV |y| < 1 "Shower/Fragmentation" 1.0E-03 1.0E-04 0 5 10 15 20 25 30 35 40 0 PTmin (GeV/c) 5 10 15 20 25 30 35 40 PT (GeV) Data on the integrated b-quark cross section (PT > PTmin, |y| < 1) at 1.8 TeV compared with the QCD Monte-Carlo model predictions of HERWIG 6.4 (CTEQ5L). Data on the B+ meson differential cross section (|y| < 1) at 1.8 TeV compared with the QCD Monte-Carlo model predictions of HERWIG 6.4 (CTEQ5L). Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 10 B+ Meson Cross Section Integrated b-quark Cross Section for PT > PTmin B+ Meson Transverse Momentum Distribution 1.0E+02 1.0E+01 HERWIG 6.4 CTEQ5L HW 6.4 Total Flavor Creation Flavor Excitation Shower/Fragmentation D0 Data CDF Data 1.0E+00 ds/dPT ( b/GeV/c) Cross Section (b) 1.0E+01 HERWIG 6.4 CTEQ5L Total Warning!… do not use “Peterson Fragmentation” Use HERWIG’s model of fragmentation: “Cluster Fragmentation” 1.0E+00 1.0E-01 1.8 TeV |y| < 1 1.0E-02 1.0E-01 1.0E-02 "Flavor Excitation" "Flavor Creation" 1.0E-03 1.8 TeV |y| < 1 "Shower/Fragmentation" 1.0E-03 1.0E-04 0 5 10 15 20 25 30 35 40 0 PTmin (GeV/c) 5 10 15 20 25 30 35 40 PT (GeV) Data on the integrated b-quark cross section (PT > PTmin, |y| < 1) at 1.8 TeV compared with the QCD Monte-Carlo model predictions of HERWIG 6.4 (CTEQ5L). Data on the B+ meson differential cross section (|y| < 1) at 1.8 TeV compared with the QCD Monte-Carlo model predictions of HERWIG 6.4 (CTEQ5L). Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 11 B+ Meson Cross Section Integrated b-quark Cross Section for PT > PTmin B+ Meson Transverse Momentum Distribution 1.0E+02 1.0E+01 HERWIG 6.4 CTEQ5L HW 6.4 Total Flavor Creation Flavor Excitation Shower/Fragmentation D0 Data CDF Data 1.0E+00 ds/dPT ( b/GeV/c) Cross Section (b) 1.0E+01 HERWIG 6.4 CTEQ5L Total Next step is todo study Warning!… not the use 1.0E+00 1.0E-01 “Peterson Fragmentation” correlations UseforHERWIG’s model of “Flavor Creation”, fragmentation: “Favor Excitation”, “Gluon Splitting” “Cluster Fragmentation” and compare with data! 1.0E-01 1.8 TeV |y| < 1 1.0E-02 1.0E-02 "Flavor Excitation" "Flavor Creation" 1.0E-03 1.8 TeV |y| < 1 "Shower/Fragmentation" 1.0E-03 1.0E-04 0 5 10 15 20 25 30 35 40 0 PTmin (GeV/c) 5 10 15 20 25 30 35 40 PT (GeV) Data on the integrated b-quark cross section (PT > PTmin, |y| < 1) at 1.8 TeV compared with the QCD Monte-Carlo model predictions of HERWIG 6.4 (CTEQ5L). Data on the B+ meson differential cross section (|y| < 1) at 1.8 TeV compared with the QCD Monte-Carlo model predictions of HERWIG 6.4 (CTEQ5L). Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 12 PT Asymmetry b-quark Correlations: PT Asymmetry A=(PT1-PT2)/(PT1+PT2) 8 PT1 (b-quark) 7 Pythia CTEQ4L 1.8 TeV PT1 > 0 GeV/c PT2 > 5 GeV/c |y1| < 1 |y2| < 1 ds/dA (b) 6 “Toward” 5 4 3 2 “Away” 1 0 PT2 (b-quark) -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 A=(PT1-PT2)/(PT1+PT2) Pythia Total Flavor Creation Flavor Excitation Shower/Fragmentation Predictions of PYTHIA 6.158 (CTEQ4L, PARP(67)=1) for the asymmetry A = (PT1PT2)/(PT1+PT2) for events with a b-quark with PT1 > 0 GeV/c and |y1| < 1.0 and a bbar quark with PT2 > 5 GeV/c and |y2| < 1.0 in proton-antiproton collisions at 1.8 TeV. The curves correspond to ds/dA (b) for flavor creation, flavor excitation, shower/fragmentation, and the resulting total. Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 13 Distance R in h- Space h- Space b-quark Correlations: Distance R 2 10.0 Pythia Total b-quark Pythia CTEQ4L Flavor Creation Flavor Excitation ds/dR (b) Shower/Fragmentation R b-quark 1.8 TeV PT1 > 5 GeV/c PT2 > 5 GeV/c |y1| < 1 1.0 0.1 0 1 2 3 4 5 Distance R 0 -1 h +1 Predictions of PYTHIA 6.158 (CTEQ4L, PARP(67)=1) for the distance, R, in h- space between the b and bbar-quark with PT1 > 5 GeV/c, PT2 > 5 GeV/c, and |y1|<1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to ds/dR (b) for flavor creation, flavor excitation, shower/fragmentation, and the resulting total. Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 14 Distance R in h- Space b-quark Correlations: Distance R b-quark Correlations: Distance R 10.0 1.000 Pythia Total Pythia CTEQ4L Flavor Creation Flavor Excitation Flavor Creation Flavor Excitation Shower/Fragmentation ds/dR (b) ds/dR (b) Shower/Fragmentation 1.0 0.1 0.100 0.010 1 2 3 4 5 0 Distance R h- Space +1 b-quark R h b-quark 0 1.8 TeV PT1 > 12 GeV/c PT2 > 6 GeV/c |y1| < 1 |y2| < 1 0.001 0 -1 Pythia CTEQ4L Pythia Total 1.8 TeV PT1 > 5 GeV/c PT2 > 0 GeV/c |y1| < 1 |y2| < 1 Fermilab MC Workshop April 30, 2003 1 2 3 4 5 Distance R Predictions of PYTHIA 6.158 (CTEQ4L, PARP(67)=1) for the distance, R, in h- space between the b and bbar-quark with |y1|<1 and |y2|<1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to ds/dR (b) for flavor creation, flavor excitation, 2 shower/fragmentation, and the resulting total. Rick Field - Florida/CDF Page 15 Azimuthal Correlations b-quark Correlations: Azimuthal Distribution b-quark direction 0.100 1.8 TeV PT1 > 5 GeV/c PT2 > 0 GeV/c |y1| < 1 |y2| < 1 ds/d (b/deg) “Toward” Pythia CTEQ4L 0.010 “Away” "Away" "Toward" bbar-quark 0.001 0 30 60 90 120 150 180 (degrees) Pythia Total Flavor Creation Flavor Excitation Shower/Fragmentation Predictions of PYTHIA 6.158 (CTEQ4L, PARP(67)=1) for the azimuthal angle, , between a b-quark with PT1 > 5 GeV/c and |y1| < 1 and a bbar-quark with PT2 > 0 GeV/c and |y2|<1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to ds/d (b/o) for flavor creation, flavor excitation, shower/fragmentation, and the resulting total. Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 16 Azimuthal Correlations Old PYTHIA default (more initial-state radiation) New PYTHIA default (less initial-state radiation) b-quark Correlations: Azimuthal Distribution b-quark Correlations: Azimuthal Distribution 0.01000 0.01000 1.8 TeV PT1 > 15 GeV/c PT2 > 10 GeV/c |y1| < 1 |y2| < 1 PYTHIA 6.206 CTEQ5L PARP(67)=1 ds/d (b/deg) ds/d (b/deg) 1.8 TeV PT1 > 15 GeV/c PT2 > 10 GeV/c |y1| < 1 |y2| < 1 0.00100 0.00010 0.00100 0.00010 "Away" "Toward" "Away" "Toward" PYTHIA 6.206 CTEQ5L PARP(67)=4 0.00001 0.00001 0 30 60 90 120 150 180 0 30 60 (degrees) PY62 (67=1) Total Flavor Creation Flavor Excitation Shower/Fragmentation PY62 (67=4) Total Predictions of PYTHIA 6.206 (CTEQ5L) with PARP(67)=1 (new default) and PARP(67)=4 (old default) for the azimuthal angle, , between a b-quark with PT1 > 15 GeV/c, |y1| < 1 and bbar-quark with PT2 > 10 GeV/c, |y2|<1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to ds/d (b/o) for flavor creation, flavor excitation, shower/fragmentation, and the resulting total. Fermilab MC Workshop April 30, 2003 90 120 150 180 (degrees) Rick Field - Florida/CDF Flavor Creation Flavor Excitation Shower/Fragmentation b-quark direction “Toward” “Away” bbar-quark Page 17 Azimuthal Correlations“Flavor Creation” Old PYTHIA default (more initial-state radiation) b-quark Correlations: Azimuthal Distribution b-quark Correlations: Azimuthal Distribution 0.01000 0.010000 1.8 TeV PT1 > 15 GeV/c PT2 > 10 GeV/c |y1| < 1 |y2| < 1 HERWIG 6.4 CTEQ5L 0.001000 0.00100 ds/d (b/deg) ds/d (b/deg) 1.8 TeV PT1 > 15 GeV/c PT2 > 10 GeV/c |y1| < 1 |y2| < 1 0.00010 "Flavor Creation" CTEQ5L HERWIG 6.4 0.000100 PYTHIA 6.206 PARP(67)=4 PYTHIA 6.206 PARP(67)=1 0.000010 "Away" "Toward" 0.00001 "Away" "Toward" 0 30 60 90 120 150 180 (degrees) HW64 Total Flavor Creation Flavor Excitation 0.000001 0 Shower/Fragmentation Predictions of HERWIG 6.4 (CTEQ5L) for the azimuthal angle, , between a bquark with PT1 > 15 GeV/c, |y1| < 1 and bbar-quark with PT2 > 10 GeV/c, |y2|<1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to ds/d (b/o) for flavor creation, flavor excitation, shower/fragmentation, and the resulting total. Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF 30 60 90 120 150 180 (degrees) b-quark direction New PYTHIA default (less initial-state radiation) “Toward” “Away” bbar-quark Page 18 Azimuthal Correlations b-quark Correlations: Azimuthal Distribution b-quark Correlations: Azimuthal Distribution 0.010000 0.010000 PYTHIA 6.206 PARP(67)=4 0.001000 PYTHIA 6.206 PARP(67)=1 1.8 TeV PT1 > 15 GeV/c PT2 > 10 GeV/c |y1| < 1 |y2| < 1 "Flavor Excitation" CTEQ5L ds/d (b/deg) ds/d (b/deg) 1.8 TeV PT1 > 15 GeV/c PT2 > 10 GeV/c |y1| < 1 |y2| < 1 HERWIG 6.4 0.000100 "Shower/Fragmentation" CTEQ5L PYTHIA 6.206 PARP(67)=4 0.001000 PYTHIA 6.206 PARP(67)=1 0.000100 HERWIG 6.4 0.000010 0.000010 0 30 60 90 120 150 180 0 Predictions of PYTHIA 6.206 (CTEQ5L) with PARP(67)=1 (new default) and PARP(67)=4 (old default) and HERWIG 6.4 (CTEQ5L) for the azimuthal angle, , between a b-quark with PT1 > 15 GeV/c, |y1| < 1 and bbar-quark with PT2 > 10 GeV/c, |y2|<1 in protonantiproton collisions at 1.8 TeV. The curves correspond to ds/d (b/o) for flavor excitation, and shower/fragmentation. Fermilab MC Workshop April 30, 2003 30 60 90 120 150 180 (degrees) (degrees) "Away" "Toward" "Away" "Toward" Rick Field - Florida/CDF b-quark direction “Toward” “Away” bbar-quark Page 19 CDF Run I Analysis Azimuthal Correlations See talk by Kevin Lannon b-quark Correlations: Azimuthal Distribution at DPF2002 b-quark Correlations: Azimuthal Distribution 0.1000 0.01000 1.8 TeV PT1 > 15 GeV/c PT2 > 10 GeV/c |y1| < 1 |y2| < 1 1.8 TeV ds/d (b/deg) 1/s ds/d (b/deg) CDF Preliminary Data 0.0100 PYTHIA 6.206 CTEQ5L PARP(67)=4 0.00100 0.00010 0.0010 "Away" "Toward" "Away" "Toward" 0.00001 0 0.0001 0 30 60 90 (degrees) 120 150 30 60 PY62 (67=4) Total Flavor Creation Run I preliminary uncorrected CDF data for the azimuthal angle, , between a b-quark |y1| < 1 and bbar-quark |y2|<1 in proton-antiproton collisions at 1.8 TeV. Warning! Can compare theory with data only after detector simulation (this now has been done!). Fermilab MC Workshop April 30, 2003 90 120 150 180 (degrees) 180 Rick Field - Florida/CDF Flavor Excitation Shower/Fragmentation b-quark direction “Toward” “Away” bbar-quark Page 20 CDF Run 1 Analysis Azimuthal PYTHIA Tune Correlations A “Gluon Splitting”! b-quark direction “Toward” “Away” bbar-quark See the next talk by Kevin Lannon! Run 1 preliminary CDF data for the azimuthal angle, , between a b-quark |y1| < 1 and bbar-quark |y2|<1 in proton-antiproton collisions at 1.8 TeV compared with PYTHIA Tune A after detector simulations. Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 21 Pair Differential Cross Section Pair Differential Cross Section 1.0E-01 PT1 (b-quark) Flavor Creation ds/dPT2 (b/GeV/c) “Toward” “Away” PT2 (b-quark) Pythia Total Pythia CTEQ4L Flavor Excitation Shower/Fragmentation 1.0E-02 1.0E-03 1.8 TeV PT1 > 12 GeV/c |y1| < 1 |Y2| < 1 1.0E-04 0 5 10 15 20 25 30 35 40 PT2 (GeV/c) Predictions of PYTHIA 6.158 (CTEQ4L, PARP(67)=1) for the transverse momentum, PT2, of a bbar-quark with |y2| < 1.0 for events with a b-quark with PT1 > 12 GeV/c and |y1| < 1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to ds/dPT2 (b/GeV/c) for flavor creation, flavor excitation, shower/fragmentation, and the resulting total. Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 22 “Toward” and “Away” Pair Differential Cross Section Pair Differential Cross Section Pair Differential Cross Section 1.0E-01 0.04 0.01 ds/dPT2 ( b/GeV/c) ds/dPT2 ( b/GeV/c) 1.0E-02 0.03 PYTHIA 6.206 CTEQ5L PARP(67)=1 0.02 "Away" "Toward" "Away" "Toward" 1.8 TeV PT1 > 12 GeV/c |y1| < 1 |Y2| < 1 1.8 TeV PT1 > 12 GeV/c |y1| < 1 |Y2| < 1 1.0E-03 1.0E-04 1.0E-05 0.00 -25 1.0E-06 -20 -15 -10 -5 0 5 10 15 20 25 -40 -35 -30 -25 -20 -15 -10 PT2 (GeV/c) “Towards” PYTHIA 6.206 CTEQ5L PARP(67)=1 -5 0 5 10 15 20 25 30 35 40 PT2 (GeV/c) Predictions of PYTHIA 6.206 (CTEQ5L, PARP(67)=1) for the transverse momentum, PT2, of a bbar-quark with |y2| < 1.0 for events with a bquark with PT1 > 12 GeV/c and |y1| < 1 in protonantiproton collisions at 1.8 TeV. The curves correspond to ds/dPT2 (b/GeV/c) for the “Away” “Away” “toward” and “away” region of for flavor creation, flavor excitation, shower/fragmentation, PT2 (b-quark) and the resulting total. PT1 (b-quark) “Toward” “Away” Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 23 “Toward” and “Away” Pair Differential Cross Section Pair Differential Cross Section Pair Differential Cross Section 1.0E-01 0.07 "Away" "Toward" "Away" "Toward" 0.06 ds/dPT2 ( b/GeV/c) ds/dPT2 ( b/GeV/c) 1.0E-02 0.05 0.04 PYTHIA 6.206 CTEQ5L PARP(67)=4 0.03 0.02 1.8 TeV PT1 > 12 GeV/c |y1| < 1 |Y2| < 1 1.8 TeV PT1 > 12 GeV/c |y1| < 1 |Y2| < 1 1.0E-03 1.0E-04 1.0E-05 PYTHIA 6.206 CTEQ5L PARP(67)=4 0.01 0.00 -25 1.0E-06 -20 -15 -10 -5 0 5 10 15 20 25 -40 -35 -30 -25 -20 -15 -10 PT2 (GeV/c) “Towards” -5 0 5 10 15 20 25 30 35 40 PT2 (GeV/c) Predictions of PYTHIA 6.206 (CTEQ5L, PARP(67)=4) for the transverse momentum, PT2, of a bbar-quark with |y2| < 1.0 for events with a bquark with PT1 > 12 GeV/c and |y1| < 1 in protonantiproton collisions at 1.8 TeV. The curves correspond to ds/dPT2 (b/GeV/c) for the “toward” and “away” region of for flavor “Away” “Away” creation, flavor excitation, shower/fragmentation, PT2 (b-quark) and the resulting total. PT1 (b-quark) “Toward” “Away” Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 24 “Toward” and “Away” Pair Differential Cross Section Pair Differential Cross Section Pair Differential Cross Section 1.0E-01 0.04 0.03 0.01 ds/dPT2 ( b/GeV/c) ds/dPT2 ( b/GeV/c) 1.0E-02 HERWIG 6.4 CTEQ5L 0.02 1.8 TeV PT1 > 12 GeV/c |y1| < 1 |Y2| < 1 1.8 TeV PT1 > 12 GeV/c |y1| < 1 |Y2| < 1 1.0E-03 1.0E-04 1.0E-05 0.00 -25 HERWIG 6.4 CTEQ5L 1.0E-06 -20 -15 -10 -5 0 5 10 15 20 25 -40 -35 -30 -25 -20 -15 -10 PT2 (GeV/c) “Towards” "Away" "Toward" "Away" "Toward" PT1 (b-quark) “Toward” “Away” “Away” “Away” PT2 (b-quark) Fermilab MC Workshop April 30, 2003 -5 0 5 10 15 20 25 30 35 40 PT2 (GeV/c) Predictions of HERWIG 6.4 (CTEQ5L) for the transverse momentum, PT2, of a bbar-quark with |y2| < 1.0 for events with a b-quark with PT1 > 12 GeV/c and |y1| < 1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to ds/dPT2 (b/GeV/c) for the “toward” and “away” region of for flavor creation, flavor excitation, shower/fragmentation, and the resulting total. Rick Field - Florida/CDF Page 25 “Toward” and “Away” Pair Differential Cross Section 1.0E-03 1.0E-04 1.0E-03 1.0E-04 -5 0 5 10 PT2 (GeV/c) 15 20 25 30 35 40 1.0E-03 1.0E-04 HERWIG 6.4 CTEQ5L 1.0E-06 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 -40 -35 -30 -25 -20 -15 -10 Rick Field - Florida/CDF -5 0 5 10 15 20 25 30 35 PT2 (GeV/c) PT2 (GeV/c) Predictions of PYTHIA 6.206 (CTEQ5L) PARP(67)=1 and PARP(67)=4 and HERWIG 6.4 (CTEQ5L) for the transverse momentum, PT2, of a bbar-quark with |y2| < 1.0 for events with a b-quark with PT1 > 12 GeV/c and |y1| < 1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to ds/dPT2 (b/GeV/c) for the “toward” and “away” region of for flavor creation, flavor excitation, shower/fragmentation, and the resulting total. Fermilab MC Workshop April 30, 2003 1.8 TeV PT1 > 12 GeV/c |y1| < 1 |Y2| < 1 1.0E-05 PYTHIA 6.206 CTEQ5L PARP(67)=4 1.0E-06 1.0E-06 -40 -35 -30 -25 -20 -15 -10 1.8 TeV PT1 > 12 GeV/c |y1| < 1 |Y2| < 1 1.0E-05 PYTHIA 6.206 CTEQ5L PARP(67)=1 "Away" "Toward" 1.0E-02 ds/dPT2 (b/GeV/c) 1.0E-02 1.8 TeV PT1 > 12 GeV/c |y1| < 1 |Y2| < 1 1.0E-05 "Away" "Toward" ds/dPT2 (b/GeV/c) ds/dPT2 (b/GeV/c) 1.0E-02 1.0E-01 1.0E-01 "Away" "Toward" Pair Differential Cross Section Pair Differential Cross Section Pair Differential Cross Section 1.0E-01 PT1 (b-quark) “Toward” “Away” PT2 (b-quark) Page 26 40 Integrated Pair Cross Section HERWIG a factor of two below data. Integrated Pair Cross Section for PT2 > PT2min Integrated Pair Cross Section for PT2 > PT2min 1.0E+02 1.0E+02 Flavor Creation Flavor Excitation 1.0E+01 CDF Data 1.0E+00 1 = b-quark 2 = bbar-quark PT1 > 6.5 GeV/c PT2 > PT2min |y1| < 1 |y2| < 1 1.0E-01 Pythia 6.206 (67=4) Total Flavor Creation Flavor Excitation 1.0E+01 Fragmentation Cross Section (b) Cross Section (b) PYTHIA 6.206 1.8 TeV CTEQ5L PARP(67)=4 HERWIG 6.4 Total HERWIG 6.4 1.8 TeV CTEQ5L Shower/Fragmentation CDF Data 1.0E+00 1 = b-quark 2 = bbar-quark PT1 > 6.5 GeV/c PT2 > PT2min |y1| < 1 |y2| < 1 1.0E-01 1.0E-02 1.0E-02 0 5 10 15 20 0 PT2min (GeV/c) PT1 (b-quark) PT2 (b-quark) Fermilab MC Workshop April 30, 2003 10 15 20 PT2min (GeV/c) Predictions of PYTHIA 6.206 (CTEQ5L, PARP(67)=4) and HERWIG 6.4 (CTEQ5L) for the intrgrated pair cross section for a bbar-quark with PT2 > PT2min, |y2| < 1.0 for events with a b-quark with PT1 > 6.5 GeV/c, |y1| < 1 in proton-antiproton collisions at 1.8 TeV. The curves correspond to s(b) for flavor creation, flavor excitation, shower/fragmentation, and the resulting total. Important to see the data at the meson level as well as the quark level and both separated into the “toward” and “away” region! “Toward” “Away” 5 Rick Field - Florida/CDF Page 27 Summary & Conclusions “Flavor Creation” Proton “Flavor Excitation” b-quark AntiProton Underlying Event Underlying Event Initial-State Radiation b-quark “Parton Shower/Fragmentation” b-quark Proton AntiProton Underlying Event Underlying Event Proton AntiProton Underlying Event Underlying Event b-quark Initial-State Radiation Initial-State Radiation All three sources are important at the Tevatron! gluon, quark, or antiquark b-quark b-quark The QCD “leading-log” Monte-Carlo models do a fairly good qualitative job in describing the b-quark data at the Tevatron. The QCD “leading-log” Monte-Carlo models do a much better job fitting the bquark data than most people realize! Much more Run 2 CDF data is on the way! In particular, we should be able experimentally to isolate the individual contributions to b-quark production by studying b-bbar correlations and we will find out in much greater detail how well the QCD Monte-Carlo models actually describe the data. Personal Remark: I do not like it when the experimenters extrapolate to the parton level and publish parton level results. The parton level is not an observable! Experiments measure hadrons & leptons! To extrapolate to the parton level requires making additional assumptions that may or may not be correct (and often the assumptions are not clearly stated or are very complicated). However, I understand why this happens (and I cannot stop it) so I suggest that the experimenters always publish the corresponding hadron level result along with their parton level extrapolations. Personal Remark: I do not like it when theorists attempt to compare parton level calculations with experimental data. Hadronization and initial/final-state radiation effects are almost always important and hence parton level calculations should be embedded within a parton-shower/hadronization framework (e.g. HERWIG or PYTHIA). Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 28 Summary & Conclusions “Flavor Creation” Proton “Flavor Excitation” b-quark AntiProton Underlying Event Underlying Event Initial-State Radiation b-quark “Parton Shower/Fragmentation” b-quark Proton AntiProton Underlying Event Underlying Event Proton AntiProton Underlying Event Underlying Event b-quark Initial-State Radiation Initial-State Radiation All three sources are important at the Tevatron! gluon, quark, or antiquark b-quark b-quark The QCD “leading-log” Monte-Carlo models do a fairly good qualitative job in describing the b-quark data at the Tevatron. The QCD “leading-log” Monte-Carlo models do a much better job fitting the bquark data than most people realize! I am trying be to able experimentally to isolate Much more Run 2 CDF data is on the way! In particular, we should influence CDF!correlations and we will find out the individual contributions to b-quark production by studying b-bbar in much greater detail how well the QCD Monte-Carlo models actually describe the data.This is now finally being done! Personal Remark: I do not like it when the experimenters extrapolate to the parton level and publish parton level results. The parton level is not an observable! Experiments measure hadrons & leptons! To extrapolate to the parton level requires making additional assumptions that may or may not be correct (and often the assumptions are not clearly stated or are very complicated). However, I understand why this happens (and I cannot stop it) so I suggest that the experimenters always publish the corresponding hadron level result along with their parton level extrapolations. Personal Remark: I do not like it when theorists attempt to compare parton level calculations with experimental data. Hadronization and initial/final-state radiation effects are almost always important and hence parton level calculations should be embedded within a parton-shower/hadronization framework (e.g. HERWIG or PYTHIA). Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 29 Summary & Conclusions “Flavor Creation” Proton “Flavor Excitation” b-quark AntiProton Underlying Event Underlying Event Initial-State Radiation b-quark “Parton Shower/Fragmentation” b-quark Proton AntiProton Underlying Event Underlying Event Proton AntiProton Underlying Event Underlying Event b-quark Initial-State Radiation Initial-State Radiation All three sources are important at the Tevatron! gluon, quark, or antiquark b-quark b-quark The QCD “leading-log” Monte-Carlo models do a fairly The next stepgood is qualitative job in describing the b-quark data at the Tevatron. The QCD “leading-log” Monte-Carlo models do a much better job fitting the bquark data than most people realize! to compare with I am trying be to able experimentally to isolate Much more Run 2 CDF data is on next-to-leading the way! In particular,order we should influence CDF!correlations and we will find out the individual contributions to b-quark production by studying b-bbar embedded within in much greater detail how well the QCD Monte-Carlo models actually describe the data.This is now finally being done! or PYTHIA! Personal Remark: I do not like HERWIG it when the experimenters extrapolate to the parton level and publish parton level results. The parton level is not an observable! Experiments measure hadrons & leptons! To extrapolate to the parton level requires making additional assumptions that may or may not be correct (and often the assumptions are not clearly stated or are very complicated). However, I understand why this happens (and I cannot stop it) so I suggest that the experimenters always publish the corresponding hadron level result along with their parton level extrapolations. Personal Remark: I do not like it when theorists attempt to compare parton level calculations with experimental data. Hadronization and initial/final-state radiation effects are almost always important and hence parton level calculations should be embedded within a parton-shower/hadronization framework (e.g. HERWIG or PYTHIA). Fermilab MC Workshop April 30, 2003 Rick Field - Florida/CDF Page 30