Chapter 2 Updated 11/7/2015 Outline • Transformation of Continuous-Time Signal – – – – Time Reversal Time Scaling Time Shifting Amplitude Transformation • Signal Characteristics.
Download ReportTranscript Chapter 2 Updated 11/7/2015 Outline • Transformation of Continuous-Time Signal – – – – Time Reversal Time Scaling Time Shifting Amplitude Transformation • Signal Characteristics.
Chapter 2 Updated 11/7/2015 Outline • Transformation of Continuous-Time Signal – – – – Time Reversal Time Scaling Time Shifting Amplitude Transformation • Signal Characteristics Time reversal: X(t) Time Reversal Y=X(-t) Mathematica Example Shift+<Enter> to execute Time scaling X(t) Time Scaling Y=X(at) Time scaling • Given y(t), – find w(t) = y(3t) – v(t) = y(t/3). Circuit Example • LC Tank Oscillator Time Shifting X(t) • The original signal x(t) is shifted by an amount to . Time Shift: y(t)=x(t-to) • X(t)→X(t-to) // to>0 → Signal Delayed → Shift to the right • X(t) → X(t+to) // to<0 → Signal Advanced → Shift to the left Time Shifting Y=X(t-to) Connection to Circuits Note: Unit Step Function Unit Step function (a discontinuous continuous-time signal): Mathematica Example (1) Mathematica Example (2) Draw • x(t) = u(t+1)- u(t-2) t=0 u(t+1)- u(t-2) Mathematica Example (2) Time Shifting Example • Given x(t) = u(t+2) -u(t-2), – find • x(t-t0)= • x(t+t0)= Answer: • x(t-t0)= u(t-to+2) -u(t-to-2), • x(t+t0)= u(t+to+2) -u(t+to-2), Problem • Determine x(t) + x(2-t) , where x(t) = u(t+1)- u(t-2 • Method 1: – Observation: Rewrite x(2-t) as x(-(t-2)) – Find x(-t) first, then shift t by t-2. • Method 2: – Observation: X(2-t) implies time reversal. – So find x(2+t), then apply time reversal Method 1 Find x(-t) first, then shift t by t-2. Method 2 find x(2+t), then apply time reversal X(2-t)+x(t) X(2-t) X(2-t)+x(t) X(t) Combination of Scaling and Shifting Method 1: Shift then scale Combination of Scaling and Shifting Method 2: Scale then shift Amplitude Operations In general: y(t)=Ax(t)+B Reversal B>0 Shift up B<0 Shift down |A|>1 Gain |A|<1 Attenuation Scaling A>0NO reversal A<0 reversal Scaling Y(t)=AX(t)+B Example Input and Output Vin, m=1 mV Vout, m=46 mV Define a Piecewise Function in Mathematica Example 2-1 X(t) Advance: X(t+1) Advance,scaling &reversal X(-t/2+1) Advance & Scaling X(t/2+1) Signal Characteristics • Even Function Xe(-t) = Xe(t) Signal Characteristics • Odd Function Xo(t) =- Xo(-t) Signal Characteristics Any signal can be represented in terms of a odd function and an even function. x(t)=xo(t)+xe(t) Xe + Ye = Ze Xo + Yo = Zo Xe + Yo = Ze + Zo Xe * Ye = Ze Xo * Yo = Ze Xe * Yo = Zo Represent xe(t) in terms of x(t) • Xe(t) – X(t)=Xe(t)+Xo(t) – Xe(t)=X(t)+Xo(t) • Xo(t)=-Xo(-t) • X(-t)=Xe(-t)+Xo(-t) – Xe(t)=X(t)-Xo(-t)=X(t)+X(-t)-Xe(-t) • Therefore Xe(t)=[X(t)+X(-t)]/2 • Similarly Xo(t)=[X(t)-X(-t)]/2 Proof Examples • Prove that product of two even signals is even. Change t -t x(t ) x1 (t ) x2 (t ) x(t ) x1 (t ) x2 (t ) x1 (t ) x2 (t ) x(t ) • Prove that product of two odd signals is even. (even) • What is the product of an even signal and an odd signal? Prove it! (odd) x(t ) x1 (t ) x2 (t ) x(t ) x1 (t ) x2 (t ) x1 (t ) x2 (t ) x(t ) x(t ) Odd